Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL

Das neue Instrument wurde im EMIL-Labor aufgebaut.

Das neue Instrument wurde im EMIL-Labor aufgebaut. © R. Garcia-Diez /HZB

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs.

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs. © HZB

An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.

Solarzellen, Katalysatoren und Batterien werden als Energiematerialien bezeichnet, weil sie Energie umwandeln oder speichern. Ihre Funktionalität basiert auf komplexen chemischen oder physikalischen Prozessen. Um diese Funktionalitäten zu verbessern, ist es entscheidend, die Prozesse zu verstehen, idealerweise während sie ablaufen, also durch In-situ- und operando-Untersuchungen. Eine neue Versuchsstation ermöglicht nun entsprechende Experimente. Sie steht im Energy Materials In-situ Laboratory Berlin (EMIL) an der Synchrotronanlage BESSY II.

Die „operando Absorption and Emission Spectroscopy on EMIL“ (OÆSE) liefert detaillierte Einblicke in die elektronischen und chemischen Strukturen von Materialien und Grenzflächen sowie deren Veränderungen während (elektro-)chemischer Prozesse mittels Röntgenabsorptionsspektroskopie (XAS) und Emissionsspektroskopie (XES).

Das Herzstück der OÆSE-Endstation ist eine modulare und flexible In-situ/Operando-Probenumgebung, die speziell auf die spezifischen Forschungsfragen für jedes Energiematerial zugeschnitten ist und sich an unterschiedliche Experimente anpassen lässt.

Um die Fähigkeiten der OÆSE-Endstation zu demonstrieren, untersuchte das Team um Raul Garcia-Diez und Marcus Bär in situ die elektrochemische Abscheidung von Kupfer aus einem wässrigen CuSO4-Elektrolyten mit weicher und harter Röntgenabsorptionsspektroskopie. Die Fallstudie zeigt, dass die neue Endstation wertvolle Einblicke in dynamische elektrochemische Prozesse bietet und somit ein besseres Verständnis komplexer elektrochemischer Systeme ermöglicht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.