Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL

Das neue Instrument wurde im EMIL-Labor aufgebaut.

Das neue Instrument wurde im EMIL-Labor aufgebaut. © R. Garcia-Diez /HZB

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs.

Das Schema zeigt den Aufbau der Endstation, einschließlich der Probenumgebung, der Analysekammer und des Strahlengangs. © HZB

An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.

Solarzellen, Katalysatoren und Batterien werden als Energiematerialien bezeichnet, weil sie Energie umwandeln oder speichern. Ihre Funktionalität basiert auf komplexen chemischen oder physikalischen Prozessen. Um diese Funktionalitäten zu verbessern, ist es entscheidend, die Prozesse zu verstehen, idealerweise während sie ablaufen, also durch In-situ- und operando-Untersuchungen. Eine neue Versuchsstation ermöglicht nun entsprechende Experimente. Sie steht im Energy Materials In-situ Laboratory Berlin (EMIL) an der Synchrotronanlage BESSY II.

Die „operando Absorption and Emission Spectroscopy on EMIL“ (OÆSE) liefert detaillierte Einblicke in die elektronischen und chemischen Strukturen von Materialien und Grenzflächen sowie deren Veränderungen während (elektro-)chemischer Prozesse mittels Röntgenabsorptionsspektroskopie (XAS) und Emissionsspektroskopie (XES).

Das Herzstück der OÆSE-Endstation ist eine modulare und flexible In-situ/Operando-Probenumgebung, die speziell auf die spezifischen Forschungsfragen für jedes Energiematerial zugeschnitten ist und sich an unterschiedliche Experimente anpassen lässt.

Um die Fähigkeiten der OÆSE-Endstation zu demonstrieren, untersuchte das Team um Raul Garcia-Diez und Marcus Bär in situ die elektrochemische Abscheidung von Kupfer aus einem wässrigen CuSO4-Elektrolyten mit weicher und harter Röntgenabsorptionsspektroskopie. Die Fallstudie zeigt, dass die neue Endstation wertvolle Einblicke in dynamische elektrochemische Prozesse bietet und somit ein besseres Verständnis komplexer elektrochemischer Systeme ermöglicht.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Nachricht
    30.05.2025
    TH Wildau und Helmholtz-Zentrum Berlin besiegeln umfassende Kooperation
    Am 21. Mai 2025 unterzeichneten die Technische Hochschule Wildau (TH Wildau) und das Helmholtz-Zentrum Berlin einen umfassenden Kooperationsvertrag. Ziel ist es, die Vernetzung und Zusammenarbeit insbesondere in der Grundlagenforschung weiter zu fördern, die wissenschaftliche Exzellenz beider Partner zu steigern und Kompetenznetzwerke in Forschung, Lehre sowie der Ausbildung des wissenschaftlichen Nachwuchses zu entwickeln.