Battery research: visualisation of aging processes operando

Here is a selection of 3D element distributions of individual elements after 10,000 charge cycles, i.e. post mortem: On the top left, crystallised electrolyte can be seen, iron in the metal contacts and copper from the back contact have remained stable, while manganese from the NMC cathode (upper light blue stripe) has partially deposited on the bottom of the anode. The publication contains the full explanation.

Here is a selection of 3D element distributions of individual elements after 10,000 charge cycles, i.e. post mortem: On the top left, crystallised electrolyte can be seen, iron in the metal contacts and copper from the back contact have remained stable, while manganese from the NMC cathode (upper light blue stripe) has partially deposited on the bottom of the anode. The publication contains the full explanation. © BLiX/TU Berlin/HZB

<p class="x_MsoNormal">The setup in the BLiX laboratory allows to analyse the composition of the individual layers of a button cell fully automatically over weeks operando using confocal X-ray fluorescence spectroscopy.</p>
<p class="x_MsoNormal">&nbsp;

The setup in the BLiX laboratory allows to analyse the composition of the individual layers of a button cell fully automatically over weeks operando using confocal X-ray fluorescence spectroscopy.

  © BLiX/TU Berlin/HZB

Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.

 

Lithium-ion batteries have become increasingly better. The combination of layered nickel-manganese-cobalt oxides (NMC) with a graphite electrode (anode) has been well established as the cathode material in button cells and has been continuously improved. However, even the best batteries do not last forever; they 'age' and lose capacity over time.

‘A lot happens at the interfaces between the anode, separator and cathode while a battery is charging or discharging,’ explains Ioanna Mantouvalou, physicist at HZB and first author of the study. Typically, these changes are only studied after the battery has been disassembled, i.e. ex situ and at a specific point in the cycling process. But there is now another way: in situ and operando experiments allow to look inside the battery while the processes are taking place, using X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) in a so-called confocal geometry. This geometry permits 3D scanning of a sample with depth resolutions down to 10 µm. Such experimental setups are already possible at the synchrotron radiation source BESSY II. However, the measurement time at BESSY II is limited, so batteries cannot be studied over their entire lifetime.

Ioanna Mantouvalou therefore uses a confocal micro X-ray fluorescence spectrometer at BLiX, which can analyse samples fully automatically over long periods of time. ‘The confocal setup allows us to distinguish the individual layers from the NMC cathode to the back contact and to study their elemental composition. This gives us spatially resolved insights into the operation without changing the layer stack. Non-destructive! Quantitative, under operating conditions, i.e. operando,’ says Mantouvalou.

The researchers analysed a lithium button cell on the BLiX instrument for several weeks and over 10,000 charge cycles, providing data on the degradation of the NMC electrode over time. In addition, the sample was examined at the new microfocus beamline (MiFO) in the PTB laboratory at BESSY II.

The study shows that during the first three weeks, manganese in particular dissolves from the NMC cathode and migrates to the carbon anode. This process takes about 200 cycles. After that, the compound increasingly dissolves in the intermediate layers, which stops further reactions and processes. ‘We urgently need such quantitative results to further improve batteries,’ says Mantouvalou. The device in the BLiX laboratory can also be used for experiments on other materials.

arö

  • Copy link

You might also be interested in

  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • KlarText Prize for Hanna Trzesniowski
    News
    08.09.2025
    KlarText Prize for Hanna Trzesniowski
    The chemist has been awarded the prestigious KlarText Prize for Science Communication by the Klaus Tschira Foundation.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.