Batterieforschung: Alterungsprozesse operando sichtbar gemacht

<p class="x_MsoNormal">Hier eine Auswahl von 3D Elementverteilungen einzelner Elemente nach 10.000 Ladezyklen, also post mortem: Oben links ist auskristallisierter Elektrolyt zu sehen, Eisen in den Metallkontakten und Kupfer aus dem R&uuml;ckkontakt sind stabil geblieben, w&auml;hrend Mangan aus der NMC-Kathode (oberer hellblauer Streifen) sich teilweise unten auf der Anode abgelagert hat. In der Publikation finden sich alle Erl&auml;uterungen dazu.

Hier eine Auswahl von 3D Elementverteilungen einzelner Elemente nach 10.000 Ladezyklen, also post mortem: Oben links ist auskristallisierter Elektrolyt zu sehen, Eisen in den Metallkontakten und Kupfer aus dem Rückkontakt sind stabil geblieben, während Mangan aus der NMC-Kathode (oberer hellblauer Streifen) sich teilweise unten auf der Anode abgelagert hat. In der Publikation finden sich alle Erläuterungen dazu. © BLiX/TU Berlin/HZB

Der Aufbau im BLiX-Labor erm&ouml;glicht es, die Zusammensetzung der einzelnen Schichten einer Knopfzelle vollautomatisch &uuml;ber Wochen operando mittels konfokaler R&ouml;ntgen Fluoreszenzspektroskopie zu analysieren.&nbsp;

Der Aufbau im BLiX-Labor ermöglicht es, die Zusammensetzung der einzelnen Schichten einer Knopfzelle vollautomatisch über Wochen operando mittels konfokaler Röntgen Fluoreszenzspektroskopie zu analysieren.  © BLiX/TU Berlin/HZB

Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.

Lithium-Ionen-Batterien sind immer besser geworden. Als Kathodenmaterial in Knopfzellen hat sich die Kombination aus geschichteten Nickel-Mangan-Kobalt-Oxiden (NMC) mit einer Graphitelektrode (Anode) bewährt, die ebenfalls stetig verbessert wurden. Dennoch halten selbst die besten Batterien nicht ewig, sie „altern“, und verlieren mit der Zeit an Kapazität.

Operando - Einblick in Prozesse

„Während sich eine Batterie auflädt oder entlädt, passiert an den Grenzschichten zwischen Anode, Separator und Kathode sehr viel“, erklärt Ioanna Mantouvalou, Physikerin am HZB und Erstautorin der Studie. Typischerweise werden diese Veränderungen erst untersucht, nachdem die Batterie auseinandergebaut wurde, also ex situ und zu einem bestimmten Zeitpunkt der Zyklisierung. Doch das geht inzwischen auch anders: Bei in situ und operando Experimenten ist es möglich, in die Batterie hineinzuschauen, während die Prozesse ablaufen, und zwar mit Röntgenfluoreszenz (XRF) und Absorptionsspektroskopie (XAS) in einer sogenannten konfokalen Geometrie. Diese Geometrie ermöglicht die 3D Abrasterung einer Probe mit Tiefenauflösungen ab 10 µm. An der Synchrotronquelle BESSY II sind solche Versuchsanordnungen bereits möglich. Doch Messzeit an BESSY II ist begrenzt, so dass Batterien nicht über ihre gesamte Lebensdauer untersucht werden können.

Messung über 10.000 Ladezyklen

Daher nutzt Ioanna Mantouvalou im BLiX ein konfokales Mikro-Röntgenfluoreszenzspektrometer, das vollautomatisch auch über lange Zeiträume Proben analysieren kann. „Der konfokale Aufbau ermöglicht es, die einzelnen Schichten von der NMC-Kathode bis zum Rückkontakt zu unterscheiden und die jeweilige Elementzusammensetzung zu untersuchen. Damit erhalten wir räumlich aufgelöste Einblicke in den Betrieb, ohne den Schichtstapel zu verändern. Zerstörungsfrei! Quantitativ, unter Betriebsbedingungen, also operando“, sagt Mantouvalou.

Mehrere Wochen und über 10.000 Ladezyklen lang analysierten die Forschenden am BLiX-Instrument eine Lithium-Knopfzelle und ermittelten Daten zur Degradation der NMC-Elektrode mit der Zeit. Darüber hinaus wurde die Probe auch an der neuen Mikrofokus-Beamline (MiFO) im PTB-Labor an der Synchrotronstrahlungsquelle BESSY II untersucht.

Mangan wandert

Die Untersuchung zeigt, dass sich in den ersten drei Wochen vor allem Mangan aus der NMC-Kathode löst und in Richtung der Kohlenstoffanode wandert. Dieser Prozess dauert rund 200 Zyklen. Danach löst sich zunehmend die Verbindung in den Zwischenschichten, was weitere Reaktionen und Prozesse stoppt. „Wir brauchen dringend solche quantitativen Ergebnisse, um Batterien weiter zu verbessern“, sagt Mantouvalou. Darüber hinaus ist das Gerät im BLiX-Labor auch im Rahmen von SyncLab für andere Experimente an anderen Materialien einsetzbar.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues HZB-Magazin „Lichtblick“ ist erschienen
    Nachricht
    18.09.2025
    Neues HZB-Magazin „Lichtblick“ ist erschienen
    In der neuen Ausgabe stellen wir unsere neue kaufmännische Geschäftsführerin vor. Wir zeigen aber auch, wie wichtig uns der Austausch ist: Die Wissenschaft lebt ohnehin vom fruchtbaren Austausch. Uns ist aber auch der Dialog mit der Öffentlichkeit sehr wichtig. Und ebenso kann Kunst einen bereichernden Zugang zur Wissenschaft schaffen und Brücken bauen. Um all diese Themen geht es in der neuen Ausgabe der Lichtblick.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.