Sodium-ion batteries: New storage mechanism for cathode materials

The image illustrates a layered structure composed of transition metals (blue) and sulfur (yellow). The space between the layers can be occupied by sodium ions (purple) and organic solvent molecules (red, brown) through a process called co-intercalation.

The image illustrates a layered structure composed of transition metals (blue) and sulfur (yellow). The space between the layers can be occupied by sodium ions (purple) and organic solvent molecules (red, brown) through a process called co-intercalation. © Y. Sun et al., Nature Materials 2025

Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.

The performance of batteries depends on many factors. In particular, it depends on how ions are stored in electrode materials and whether they can be released again. This is because the charge carriers (ions) are relatively large and can cause an undesirable change in volume when they migrate into the electrode. This effect, known as 'breathing', impairs the battery's service life. The volume change is particularly pronounced when sodium ions migrate together with molecules from the organic electrolyte. This so-called co-intercalation has generally been considered detrimental to battery life. However, an international research team led by Philipp Adelhelm has now investigated cathode materials that enable the co-intercalation of ions and solvent molecules, allowing for faster charging and discharging processes.

Co-intercalation in anodes

In earlier studies, the team investigated co-intercalation in graphite anodes, demonstrating that sodium could migrate quickly and reversibly into and out of the electrolyte over many cycles when combined with glyme molecules. Nevertheless, proofing the same concept for cathode materials remained difficult. To tackle this challenge, the team explored a range of layered transition metal sulfides and identified solvent co-intercalation processes in cathode materials. ‘The process of co-intercalation could be used for developing very efficient and faster-charging batteries. This is why we wanted to investigate this topic in more detail,’ says Prof. Philipp Adelhelm.

Co-intercalation in cathodes: a different process

The study incorporates detailed investigations from the last three years: Dr. Yanan Sun carried out volume change measurements in the cathode materials, performed structural analyses with synchrotron radiation at PETRA III at DESY, and investigated the electrochemical properties for a variety of combinations of electrodes and solvents. By support from theory, in collaboration with Dr. Gustav Åvall, important parameters could be identified that help predicting co-intercalation reactions in the future.

Advantage: Super-fast kinetics

‘The co-intercalation process in cathode materials differs significantly from what happens in graphite anodes,’ explains Yanan Sun. While co-intercalation reactions in graphite anodes typically result in low-capacity electrodes, the loss of capacity caused by co-intercalation in the investigated cathode materials is very low. ‘Above all, certain cathode materials offer a huge advantage: the kinetics are super-fast, almost like a supercapacitor!’ Sun emphasises.

Vast chemical landscape for novel materials

'The true beauty of co-intercalation reactions lies in their ability to offer a vast chemical landscape for designing novel layered materials for diverse applications.’ says Adelhelm. ‘Exploring the concept of co-intercalation was extremely risky because it is against classical battery knowledge. I was therefore very grateful to receive funding for this idea from the European Research Council through an ERC Consolidator Grant. The findings are the result of a collaborative effort from many talented people and would not have been possible without the opportunities provided by the joint research group on operando battery analysis financed by Helmholtz-Zentrum Berlin and Humboldt-University,’ he adds. ‘The recently announced Berlin Battery Lab between HZB, HU and BAM will provide even more opportunities for joint research projects in Berlin.‘

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.