MXene as a frame for 2D water films shows new properties

Cooling down the MXene with enclosed water (left) leads to the formation of amorphous ice clusters (right), significantly increasing the distance between the MXene layers and the formerly metallic MXene becomes a semiconductor. When heated, the clusters dissolve, the distance between the layers decreases and the sample becomes metallic again.

Cooling down the MXene with enclosed water (left) leads to the formation of amorphous ice clusters (right), significantly increasing the distance between the MXene layers and the formerly metallic MXene becomes a semiconductor. When heated, the clusters dissolve, the distance between the layers decreases and the sample becomes metallic again. © HZB

An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.

Water still has unknown sides. When water is forced into two dimensions by enclosing it in appropriate materials, new properties, phase transitions, and structures emerge. MXenes as a class of materials offer a unique platform for exploring these types of phenomena: MXenes consist of transition metal carbides and nitrides with a layered structure whose surfaces can help them absorb water easily. The water forms an extremely thin film between the individual layers.

A team led by Dr Tristan Petit, HZB, and Yury Gogotsi, Drexel University, USA, has investigated a series of MXene samples containing enclosed water and different ions at BESSY II using various analytical methods.

X-ray structural analysis revealed the formation of amorphous ice clusters in the enclosed water, which increases the distance between the MXene layers. The previously metallic MXene film then becomes a semiconductor. “When heated above 300 K, the clusters dissolve again, restoring the distance between the layers and their metallic behaviour,” says Petit. This metal-semiconductor transition is therefore reversible, unless the water layer is removed. Further X-ray investigations using different techniques revealed unique characteristics in the water hydrogen bond networks.

‘In the next step, we need computer-aided modelling to improve our understanding of the formation of amorphous ice and its impact on electronic transport,’ says Katherine Mazzio, who is co-first author of the study. She concludes that MXene is ideal for investigating the phase changes of confined water, providing new insights into how water behaves at the nanoscale. The use of MXene as a material for energy storage and catalysis is already being discussed, and the role of confined water on the unique MXene properties for these applications is currently being investigated.

arö

  • Copy link

You might also be interested in

  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.