Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht

Rasterelektronenmikroskopische Aufnahme eines Katalysators auf Kobaltbasis auf einem Fasersubstrat (Aufnahme nachträglich koloriert) und schematische Darstellung der operando-Materialcharakterisierung mittels diverser Techniken, dargestellt durch künstlich hinzugefügte Lichtstrahlen, Blasen und ansteigende Spektren.

Rasterelektronenmikroskopische Aufnahme eines Katalysators auf Kobaltbasis auf einem Fasersubstrat (Aufnahme nachträglich koloriert) und schematische Darstellung der operando-Materialcharakterisierung mittels diverser Techniken, dargestellt durch künstlich hinzugefügte Lichtstrahlen, Blasen und ansteigende Spektren. © Marc Tesch/MPI-CEC

Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.

Die Sauerstoffentwicklungsreaktion (OER) bei der Wasserelektrolyse benötigt besondere katalytische Unterstützung. Doch Iridium-Katalysatoren sind aufgrund des Preises und der limitierten Verfügbarkeit für einen Einsatz im großen Maßstab problematisch, es gilt also Alternativen zu finden.

Ein internationales Team unter der Leitung von Dr. Alexandr N. Simonov von der Monash University in Melbourne, Australien, hat nun die saure Sauerstoffentwicklungsreaktion an Kobalt-basierten Katalysatoren untersucht und dabei die Veränderungen an den aktiven Kobaltstellen aufgeklärt. Dafür setzten die Forschungsteams mehrere Methoden ein und kombinierten die Erkenntnisse zu einem neuen Bild.

Prozesse während der Katalyse

Die Stabilisierung der Katalysatoren während der OER umfasst das Zusammenspiel von Korrosions- und Oxidationsprozessen und gilt als Schlüssel zur Katalysatorentwicklung. „In dieser Studie haben wir aufgedeckt, dass die Korrosions- und Ablagerungsprozesse nicht direkt mit dem katalytischen Prozess gekoppelt sind, sondern parallel ablaufen“, sagt Dr. Marc Tesch vom Max-Planck-Institut für Chemische Energiekonversion, einer der Autoren der Studie. Die zeitaufgelösten Messungen zeigen außerdem, dass die Entwicklung des Katalysators zu einem stabilisierten aktiven Zustand kein schneller Prozess ist, sondern auf einer Zeitskala von Minuten abläuft. Die Röntgenspektroskopie zeigt, dass die katalytisch aktiven Kobaltstellen während der sauren OER einen Oxidationszustand höher als 3+ annehmen und keine Fernordnung aufweisen. Damit unterscheiden sie sich von zuvor beschriebenen Kobalt-μ-(Hydr)oxo-Strukturen, welche in neutraler und basischer Reaktionsumgebung vorliegen.

Internationale Zusammenarbeit unter Corona-Bedingungen

Ein wesentlicher Teil der Forschung wurde während der Corona-Pandemie am BESSY II durchgeführt, als internationale Reisen und der externe Zugang zur Synchrotronanlage stark eingeschränkt waren. „Daher war die Unterstützung durch das lokale Team am BESSY II besonders wichtig“, sagt Tesch.

Die Erkenntnisse sind hilfreich, um kostengünstige Anodenkatalysatoren auf Kobaltbasis für den Einsatz in Protonenaustausch-Wasserelektrolyseuren zu entwickeln.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.