Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen

Wenn Nickeloxid (NiO) mit ultrakurzen UV-Lichtimpulsen angeregt wird, werden die Elektronenabstoßungen kurzzeitig schwächer, wodurch sich der Isolator eher wie ein Metall verhält. Um diesen Effekt zu erfassen, wurde das Material mit UV-Impulsen untersucht und die Absorption und Reflektivität gemessen. Die Ergebnisse zeigen, dass sich die Elektronenabstoßung mit Licht beeinflussen lässt.

Wenn Nickeloxid (NiO) mit ultrakurzen UV-Lichtimpulsen angeregt wird, werden die Elektronenabstoßungen kurzzeitig schwächer, wodurch sich der Isolator eher wie ein Metall verhält. Um diesen Effekt zu erfassen, wurde das Material mit UV-Impulsen untersucht und die Absorption und Reflektivität gemessen. Die Ergebnisse zeigen, dass sich die Elektronenabstoßung mit Licht beeinflussen lässt. © T. Rossi /HZB

Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.

In den meisten Metalloxiden verhalten sich Elektronen wie Autos im Stau: Starke Abstoßungskräfte hindern sie daran, sich in benachbarte Bereiche zu bewegen, die bereits von anderen Elektronen besetzt sind, und frieren sie sozusagen an Ort und Stelle ein. Materialien, die diesen Abstoßungskräften (oder Korrelationen) unterliegen, leiten Strom schlecht und zeigen beispielsweise bei der Umwandlung von Sonnenenergie eine schlechte Leistung.

Ein großes internationales Team hat nun gezeigt, dass ultrakurze Lichtimpulse von nur wenigen zehn Femtosekunden diese Abstoßungskräfte vorübergehend abschwächen können. Für einen kurzen Moment können sich die Elektronen mit geringerem Energieaufwand bewegen, wodurch sich das Material eher wie ein Metall verhält. Im Gegensatz zu herkömmlichen Methoden, die auf Temperatur, Druck oder chemischen Veränderungen beruhen, um die Leitfähigkeit zu verändern, nutzt dieser Ansatz Licht, um denselben Effekt in ultrakurzen Zeiträumen zu erzielen.

Um diesen Effekt auf ultraschnellen Zeitskalen zu erfassen, hat sich das HZB-Team mit mehreren Partnern zusammengetan. Das Experiment fand am LACUS in Lausanne (Schweiz) statt, einem Zentrum, das sich auf die Untersuchung von ultraschnellen Prozessen spezialisiert hat, während die Probencharakterisierung, Datenanalyse und Simulationen am HZB durchgeführt wurden.

Das Team konzentrierte sich auf Nickeloxid (NiO), einen Ladungstransferisolator mit einer elektronischen Struktur, die der von Hochtemperatur-Supraleitern ähnelt. In NiO gelang ihnen eine beispiellose Kontrolle: Die Verringerung der Elektronenabstoßung ist linear zur Lichtintensität, hält Hunderte von Pikosekunden an und kehrt unabhängig von der Anregungsdichte im gleichen Tempo zum Gleichgewicht zurück. Insgesamt eröffnen diese Eigenschaften spannende neue Perspektiven für effizientere lichtbasierte Bauelemente und Technologien der nächsten Generation, die einen großen Dynamikbereich mit ultraschnellen Schaltgeschwindigkeiten kombinieren.

Partnereinrichtungen:

  • Max Planck Institute for the Structure and the Dynamics of Matter (Germany)
  • Helmholtz Center for Materials and Energy (Germany)
  • Elettra Synchrotron Trieste (Italy)
  • Paul Scherrer Institute (Switzerland)
  • University of Basel (Switzerland)
  • University of California Davis (USA)
  • Simons Foundation Flatiron Institute (USA)

Text: Thomas Rossi

  • Link kopieren

Das könnte Sie auch interessieren

  • KlarText-Preis für Wissenschaftskommunikation geht an Dr. Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Wissenschaftskommunikation geht an Dr. Hanna Trzesniowski
    Frau Dr. Hanna Trzesniowski, die 2024 ihre Doktorarbeit am HZB abgeschlossen hat, wurde mit dem Klaus-Tschira-Preis ausgezeichnet. 
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 25 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.