Poröse organische Struktur verbessert Lithium-Schwefel-Batterien

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen.

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen. © Sijia Cao / HZB

Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.

Kristalline Gerüststrukturen aus organischen Polymeren (covalent organic frameworks, COF) sind eine interessante Materialklasse. Sie zeichnen sich durch ihre hohe Porosität aus, vergleichbar mit einem Schwamm, allerdings sind in diesem Fall die Poren höchstens wenige Mikrometer groß. Manche dieser COF-Materialien besitzen besondere Eigenschaften, die sich für Anwendungen in elektrochemischen Energiespeichern anbieten, zum Beispiel eignen sich bestimmte Strukturen als „Wirte“ für Schwefelverbindungen wie Polysulfide in den Elektroden von Lithium-Schwefel-Batterien. Die Idee ist, dass sich die Polysulfide an die Innenflächen der Poren binden und dort wieder elementaren Schwefel erzeugen. Bislang hat dies jedoch noch nicht richtig funktioniert.

Neu entwickelt: Ein COF mit Radikalen

Ein Team um Prof. Yan Lu (HZB) und Prof. Arne Thomas (Technische Universität Berlin) hat nun mit einem neu entwickelten COF-Material einen großen Fortschritt erzielt. Durch die Einbindung bestimmter Radikale gelang es dem Team, die gewünschte Reaktion in den Poren katalytisch zu beschleunigen.

Das Material besteht aus Tetrathiafulvalen-Einheiten ([TTF]2•+) und Trisulfid-Radikal-Anionen (S3•-), die über Benzothiazol (R-TTF•+-COF) miteinander verbunden sind. Dies erhöht sowohl die katalytische Aktivität als auch die elektrische Leitfähigkeit des COF. „Ungepaarte Elektronen spielen in den Mikro-/Mesoporen von COFs eine wichtige Rolle”, erklärt Yan Lu: „Sie tragen zu delokalisierten π-Orbitalen bei, was den Ladungstransfer zwischen den Schichten erleichtert und somit die katalytischen Eigenschaften verbessert.”

Komplexe Untersuchung von allen Seiten

In einer sehr komplexen und aufwändigen Studie hat das Team die zentrale Rolle von Radikalmotiven bei der Katalyse der Schwefelreduktionsreaktionen aufgeklärt. Dafür untersuchten sie die COF-Materialien in Li-S-Batteriezellen mit Festkörper-Kernspinresonanzspektroskopie (ssNMR) und Elektronenspinresonanzspektroskopie (EPR). Außerdem arbeiteten sie mit In-situ-Röntgentomographie an der BAMline bei BESSY II, um die Poren im Inneren genauer zu charakterisieren. Sie kombinierten diese experimentellen Ergebnisse mit theoretischen Berechnungen, um die Ergebnisse zu interpretieren. „Dadurch konnten wir zeigen, dass die Radikalkationen [TTF]2•+ als katalytische Zentren fungieren, die LiPS binden und die Verlängerung und Spaltung der S−S-Bindungen erleichtern“, sagt Sijia Cao, die im Team von Yan Lu ihre Doktorarbeit macht.

Signifikante Steigerung der Lebensdauer

Das Ergebnis ist erstaunlich: Die Leistung der Li-S-Batterie verbessert sich durch den Einsatz des neuen R-TTF•+-COF-Materials deutlich. Die Lebensdauer von Li-S-Batterien erhöht sich somit auf über 1.500 Zyklen mit einem Kapazitätsverlust von nur 0,027 % pro Zyklus. Diese Haltbarkeit von Li-S-Batterien wurde mit COF-Materialien oder anderen rein organischen Katalysatoren bisher noch nicht erreicht. In der Regel besitzen Li-S-Batterien laut Berichten aus den letzten Jahren eine Lebensdauer von weniger als 1.000 Zyklen.

„Die Integration solcher Radikalgerüststrukturen in Lithium-Schwefel-Batterien ist sehr vielversprechend“, sagt Yan Lu. Darüber hinaus bieten diese Materialien eine Vielzahl von Möglichkeiten zur weiteren Optimierung. Die elektronischen Eigenschaften des Gerüsts und die katalytische Aktivität ändern sich je nachdem, welche Moleküle als Radikale verwendet werden. Die Forschung zu COFs mit stabilen Radikalbausteinen, die speziell auf die Katalyse von Schwefelreduktionsreaktionen zugeschnitten sind, wird daher sicher weiter ein fruchtbares Arbeitsgebiet bleiben.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.