Poröse organische Struktur verbessert Lithium-Schwefel-Batterien

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen.

In den Poren dieses radikalen organischen Gerüsts sind Polysulfide fest eingeschlossen. So wird verhindert, dass sie zurück in die Batterie gelangen und deren Lebensdauer verkürzen. © Sijia Cao / HZB

Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.

Kristalline Gerüststrukturen aus organischen Polymeren (covalent organic frameworks, COF) sind eine interessante Materialklasse. Sie zeichnen sich durch ihre hohe Porosität aus, vergleichbar mit einem Schwamm, allerdings sind in diesem Fall die Poren höchstens wenige Mikrometer groß. Manche dieser COF-Materialien besitzen besondere Eigenschaften, die sich für Anwendungen in elektrochemischen Energiespeichern anbieten, zum Beispiel eignen sich bestimmte Strukturen als „Wirte“ für Schwefelverbindungen wie Polysulfide in den Elektroden von Lithium-Schwefel-Batterien. Die Idee ist, dass sich die Polysulfide an die Innenflächen der Poren binden und dort wieder elementaren Schwefel erzeugen. Bislang hat dies jedoch noch nicht richtig funktioniert.

Neu entwickelt: Ein COF mit Radikalen

Ein Team um Prof. Yan Lu (HZB) und Prof. Arne Thomas (Technische Universität Berlin) hat nun mit einem neu entwickelten COF-Material einen großen Fortschritt erzielt. Durch die Einbindung bestimmter Radikale gelang es dem Team, die gewünschte Reaktion in den Poren katalytisch zu beschleunigen.

Das Material besteht aus Tetrathiafulvalen-Einheiten ([TTF]2•+) und Trisulfid-Radikal-Anionen (S3•-), die über Benzothiazol (R-TTF•+-COF) miteinander verbunden sind. Dies erhöht sowohl die katalytische Aktivität als auch die elektrische Leitfähigkeit des COF. „Ungepaarte Elektronen spielen in den Mikro-/Mesoporen von COFs eine wichtige Rolle”, erklärt Yan Lu: „Sie tragen zu delokalisierten π-Orbitalen bei, was den Ladungstransfer zwischen den Schichten erleichtert und somit die katalytischen Eigenschaften verbessert.”

Komplexe Untersuchung von allen Seiten

In einer sehr komplexen und aufwändigen Studie hat das Team die zentrale Rolle von Radikalmotiven bei der Katalyse der Schwefelreduktionsreaktionen aufgeklärt. Dafür untersuchten sie die COF-Materialien in Li-S-Batteriezellen mit Festkörper-Kernspinresonanzspektroskopie (ssNMR) und Elektronenspinresonanzspektroskopie (EPR). Außerdem arbeiteten sie mit In-situ-Röntgentomographie an der BAMline bei BESSY II, um die Poren im Inneren genauer zu charakterisieren. Sie kombinierten diese experimentellen Ergebnisse mit theoretischen Berechnungen, um die Ergebnisse zu interpretieren. „Dadurch konnten wir zeigen, dass die Radikalkationen [TTF]2•+ als katalytische Zentren fungieren, die LiPS binden und die Verlängerung und Spaltung der S−S-Bindungen erleichtern“, sagt Sijia Cao, die im Team von Yan Lu ihre Doktorarbeit macht.

Signifikante Steigerung der Lebensdauer

Das Ergebnis ist erstaunlich: Die Leistung der Li-S-Batterie verbessert sich durch den Einsatz des neuen R-TTF•+-COF-Materials deutlich. Die Lebensdauer von Li-S-Batterien erhöht sich somit auf über 1.500 Zyklen mit einem Kapazitätsverlust von nur 0,027 % pro Zyklus. Diese Haltbarkeit von Li-S-Batterien wurde mit COF-Materialien oder anderen rein organischen Katalysatoren bisher noch nicht erreicht. In der Regel besitzen Li-S-Batterien laut Berichten aus den letzten Jahren eine Lebensdauer von weniger als 1.000 Zyklen.

„Die Integration solcher Radikalgerüststrukturen in Lithium-Schwefel-Batterien ist sehr vielversprechend“, sagt Yan Lu. Darüber hinaus bieten diese Materialien eine Vielzahl von Möglichkeiten zur weiteren Optimierung. Die elektronischen Eigenschaften des Gerüsts und die katalytische Aktivität ändern sich je nachdem, welche Moleküle als Radikale verwendet werden. Die Forschung zu COFs mit stabilen Radikalbausteinen, die speziell auf die Katalyse von Schwefelreduktionsreaktionen zugeschnitten sind, wird daher sicher weiter ein fruchtbares Arbeitsgebiet bleiben.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.