BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften

Die Aufnahme mit dem Rastertunnelmikroskop zeigt die Phosphoratome, die sich auf einem Silbersubstrat zu kurzen Ketten angeordnet haben.

Die Aufnahme mit dem Rastertunnelmikroskop zeigt die Phosphoratome, die sich auf einem Silbersubstrat zu kurzen Ketten angeordnet haben. © HZB/Small Structures (2025)/10.1002/sstr.202500458

Das Diagramm erklärt die Beschaffenheit des P-Signals in den ARPES-Daten und die Entsprechung der geraden Linien in der ARPES-Karte (links) zu den drei Orientierungen der Ketten (rechts). 

Das Diagramm erklärt die Beschaffenheit des P-Signals in den ARPES-Daten und die Entsprechung der geraden Linien in der ARPES-Karte (links) zu den drei Orientierungen der Ketten (rechts).  © HZB/Small Structures (2025)/10.1002/sstr.202500458

Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.

Die materielle Welt besteht aus Atomen, die sich zu allerlei unterschiedlichen Stoffen verbinden. In der Regel sind diese Atome sowohl in einer Ebene als auch senkrecht dazu untereinander vernetzt. Aber es geht auch anders: So können Kohlenstoffatome Graphen bilden, ein hexagonales Netz, in dem sie nur in einer Ebene untereinander verbunden sind. Auch das Element Phosphor kann sich zweidimensional vernetzen und eine stabile 2D-Form bilden. Solche zweidimensionalen Materialien sind ein spannendes Forschungsgebiet, weil sie erstaunliche elektronische und optische Eigenschaften besitzen. Theoretische Betrachtungen zeigen, dass die elektro-optischen Eigenschaften von eindimensionalen Strukturen noch exotischer sein könnten.

1D-Strukturen aus Phosphorketten

Tatsächlich gelingt es auch seit kurzem, eindimensionale Strukturen herzustellen. Unter bestimmten Bedingungen klappt es zum Beispiel, dass Phosphoratome sich wie von selbst zu kurzen Linien auf einem Silbersubstrat anordnen. Morphologisch sind diese Ketten eindimensional. Allerdings muss man annehmen, dass sie seitlich mit anderen Ketten wechselwirken. Solche Wechselwirkungen beeinflussen die elektronische Struktur und könnten die Eindimensionalität zerstören. Bislang war es jedoch nicht möglich, dies sauber experimentell zu messen.

ARPES-Messungen an BESSY II

„Wir haben nun mit einer sehr gründlichen Auswertung von Messungen an BESSY II gezeigt, dass solche Phosphorketten wirklich eine eindimensionale elektronische Struktur besitzen“, sagt Prof. Oliver Rader, der am HZB die Abteilung für Abteilung Spin und Topologie in Quantenmaterialien leitet.

Dr. Andrei Varykhalov hat mit seinem Team zunächst am Kryo-Rastertunnelmikroskop Phosphorketten auf Silber hergestellt und charakterisiert. Die Bilder zeigen, dass sich kurze P-Ketten in drei unterschiedlichen Richtungen auf dem Substrat bilden, die untereinander 120-Grad Winkel haben.

„Wir haben dabei sehr hochwertige Ergebnisse erzielt, so konnten wir am Rastertunnelmikroskop stehende Wellen (von Elektronen) beobachten, die sich entlang der Ketten bilden“, sagt Varykhalov. Die elektronische Struktur untersuchten sie mit einer Methode, mit der das Team bereits sehr viel Erfahrung hat: Die winkelaufgelöste Photoelektronenemissionsspektroskopie (Angle-resolved photoelectron Spectroscopy, ARPES) an BESSY II.

Halbleiter-Metall-Übergang bei zunehmender Dichte

Hier leisteten Dr. Maxim Krivenkov und Dr. Maryam Sajedi Pionierarbeit: Durch die sorgfältige Analyse der Daten gelang es ihnen, die Beiträge von den drei unterschiedlich ausgerichteten Phosphorketten voneinander zu trennen. „Wir konnten die ARPES-Signale aus diesen Domänen entwirren und damit zeigen, dass solche 1D-Phosphorketten tatsächlich eine sehr klare 1D-Elektronenstruktur aufweisen“, sagt Krivenkov. Berechnungen mit der Dichtefunktionaltheorie bestätigen diese Analyse und treffen eine spannende Prognose: Je dichter diese Ketten aneinander liegen, desto stärker wechselwirken sie. Die Berechnungen sagen bei zunehmender Dichte des Kettenarrays einen Phasenübergang von Halbleiter zu Metall voraus, sodass eine zweidimensionale Phosphorketten-Struktur metallisch wäre.

„Wir haben hier ein neues Forschungsfeld betreten, ein Neuland, in dem vermutlich noch viele aufregende Entdeckungen möglich sind“, sagt Varykhalov.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).