Elektrokatalyse mit doppeltem Nutzen – ein Überblick

Mit in situ und operando Methoden an Synchrotronquellen können komplexe organische Oxidationsreaktionen in Echtzeit beobachtet und analysiert werden. 

Mit in situ und operando Methoden an Synchrotronquellen können komplexe organische Oxidationsreaktionen in Echtzeit beobachtet und analysiert werden.  © Debabrata Bagchi / HZB

Schema eines hybriden Elektrolyseurs, der an der Kathode Wasserstoff erzeugt, während an der Anode wertvolle organische Verbindungen entstehen. 

Schema eines hybriden Elektrolyseurs, der an der Kathode Wasserstoff erzeugt, während an der Anode wertvolle organische Verbindungen entstehen.  © Debabrata Bagchi / HZB

Diese Grafik bietet einen Überblick über die Themen, die in dem ausführlichen Beitrag behandelt werden.  Zu den in OOR verwendeten aktiven Metallen gehören Nickel, Kobalt, Kupfer, Mangan, Ruthenium, Platin, Palladium und Gold.

Diese Grafik bietet einen Überblick über die Themen, die in dem ausführlichen Beitrag behandelt werden.  Zu den in OOR verwendeten aktiven Metallen gehören Nickel, Kobalt, Kupfer, Mangan, Ruthenium, Platin, Palladium und Gold. © Debabrata Bagchi / HZB

Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.

Hybride Wasserelektrolyseure erzeugen an der Kathode Wasserstoff oder andere Reduktionsprodukte, während an der Anode wertvolle organische Oxidationsprodukte entstehen. Dieser innovative Ansatz erhöht die Rentabilität der Wasserstofferzeugung erheblich. Ein weiterer Vorteil besteht darin, dass die herkömmliche Synthese für solche organischen Verbindungen oft aggressive Reagenzien erfordern, während die Elektrokatalyse mit organischen Oxidationsreaktionen (OOR) relativ umweltfreundlich ist.

Allerdings sind organische Oxidationsreaktionen sehr komplex, sie umfassen mehrere Oxidationszustände des Katalysators, Phasenübergänge, Zwischenprodukte, die Bildung und Auflösung von Bindungen sowie eine unterschiedliche Produktselektivität. Die Forschung zu OOR steckt noch in den Kinderschuhen.

In Nature Reviews Chemistry gibt ein Team unter der Leitung von Dr. Prashanth Menezes (HZB) und Prof. Matthias Driess (Technische Universität Berlin) einen umfassenden Überblick über dieses spannende Forschungsgebiet. Sie erläutern die neuesten Methoden an Synchrotronquellen wie BESSY II, mit denen komplexe Reaktionen in Echtzeit und in situ analysiert werden können.

Überblick über aktuellen Wissensstand und neueste Methoden

Der Überblick umfasst eine Reihe von katalytischen Reaktionen, darunter die Oxygenierung von Alkoholen und Aldehyden, die Dehydrierung von Aminen, den Abbau von Harnstoff und Kupplungsreaktionen. Die Autoren stellen die nützlichsten Methoden vor, um Einblicke in die komplexen Reaktionsmechanismen zu gewinnen, darunter Röntgenabsorption, Raman- und Infrarotspektroskopie sowie differentielle elektrochemische Massenspektrometrie. In-situ-Methoden zeigen strukturelle Veränderungen im Katalysator auf, während Operando-Techniken sowohl die Struktur als auch die Aktivität unter realen Betriebsbedingungen überwachen. Diese Methoden können verwendet werden, um alle Arten von katalytischen oder chemischen Reaktionssystemen zu untersuchen und Einblicke in das Verhalten von Katalysatoren und Reaktionen unter Betriebsbedingungen zu gewinnen. Die Übersicht enthält auch ein Kapitel über Methoden des maschinellen Lernens zur Auswertung großer Datensätze.


„Diese Übersicht soll das Bewusstsein für dieses spannende Forschungsgebiet schärfen und Wissenschaftlerinnen und Wissenschaftler ermutigen, verschiedene Analysetechniken zu kombinieren. Dies wird das Verständnis heterogener katalytischer Reaktionen fördern und die Entwicklung effizienter Hybrid-Elektrokatalysatoren als nachhaltige grüne Chemietechnologie beschleunigen“, sagt Menezes.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für gebäudeintegriete Solarfassaden
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für gebäudeintegriete Solarfassaden
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.