Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
Vor rund 40 Jahren wurde eine neue Materialklasse plötzlich berühmt: Hochtemperatur-Supraleiter können Strom vollkommen verlustfrei leiten, und zwar nicht erst nahe dem absoluten Nullpunkt der Temperatur (0 Kelvin oder minus 273 Grad Celsius), sondern bei viel höheren Temperaturen, wenn auch immer noch weit unterhalb der Raumtemperatur. Inzwischen gibt es bereits technische Anwendungen mit solchen Materialien. Dabei ist das Phänomen noch immer nicht vollständig verstanden. Sicher ist nur, dass Wechselwirkungen zwischen den Ladungsträgern dafür sorgen, dass diese unter bestimmten Bedingungen reibungslos durch das Kristallgitter gleiten.
Nun hat ein internationales Team um Professor Dr. Alexander Föhlisch an BESSY II die Energie von Ladungsträgerpaaren an Sauerstoffatomen präzise experimentell gemessen. Die Proben von der Universität Rom bestanden aus alternierenden Schichten von Kupferoxid und Lanthanoxid mit der Summenformel La2CuO4. Mit Fremdatomen dotiert, kann diese Verbindung unterhalb 40 Kelvin supraleitend werden, wobei die Supraleitung in den CuO-Schichten stattfindet, während die LaO-Schichten isolierend bleiben. Für die Supraleitung, so die Vermutung, spielen insbesondere fehlende Elektronen um Sauerstoffatome, so genannte Sauerstoff-Löcher, die zentrale Rolle. Die Messungen fanden an undotiertem La2CuO4 bei Raumtemperatur statt.
„Wir wollten herausfinden, wie stark die Wechselwirkungen zwischen Ladungsträgern in den beiden verschiedenen Oxid-Schichten sind und wie sie sich unterscheiden“, erklärt Erstautor Dr. Danilo Kühn, der die Messungen im Rahmen des Uppsala-Berlin Joint Laboratory bei BESSY II gemacht hat.
Für das Experiment verwendete das Team weltweit einzigartige Flugzeitspektrometer um Elektronenpaare mittels Auger-Photoelektronen-Koinzidenzspektroskopie hocheffizient zu detektieren. Dabei treffen spezielle Röntgenpulse (PPRE Pulse) im Abstand von mehreren 100 Nanosekunden auf die Probe, ein Abstand, der ausreichend Zeit lässt, um die Wechselwirkungsprozesse sorgfältig zu messen, die viele Millionen Mal schneller ablaufen.
„Wir konnten diese Wechselwirkungen mit unserer Methode genau analysieren, da wir die relevante Kupferoxidschicht selektiv betrachten“, sagt Kühn. Die Wechselwirkungsenergien waren in der für Supraleitung zentralen Kupferoxidschicht deutlich geringer als in den isolierenden Lanthanoxidschichten.
„Diese Ergebnisse helfen die Mechanismen der Hochtemperatursupraleitung besser zu verstehen“, erklärt Alexander Föhlisch und betont: „Diese Messtechnik kann auch Einblicke in andere funktionale Materialien verschaffen.“