Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen

Die Grafik verdeutlicht die Rolle von Karbonaten und ihren Radikalen bei der CO<sub>2</sub>-Elektroreduktion und Wasserstoffentwicklung.

Die Grafik verdeutlicht die Rolle von Karbonaten und ihren Radikalen bei der CO2-Elektroreduktion und Wasserstoffentwicklung. © © Schleuse01 / Maja Wypychowska)

Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.

Die Umwandlung von atmosphärischem CO2 in Brennstoffe mittels Elektrokatalyse bietet eine Alternative zur Nutzung von fossilen Ressourcen, ist aber nach wie vor ineffizient und kostspielig. Gleichzeitig ablaufende, konkurrierende Reaktionen wie die Wasserstoffentwicklung schränken die Selektivität der elektrokatalytischen CO2-Umwandlung ein. Der Schlüssel zur Verbesserung der Reaktionseffizienz liegt an der Katalysatoroberfläche: Hydratationsschichten, die durch Wasser und andere Moleküle gebildet werden, regulieren, wie effizient diese chemischen Umwandlungen ablaufen. „Die Rolle von Karbonatanionen und die Beschaffenheit der Hydratationsschichten während der CO2-Elektroreduktion sind jedoch noch weitgehend unverstanden“, sagt Dr. Christopher Kley, Helmholtz-Nachwuchsgruppenleiter am HZB und in der Abteilung Grenzflächenwissenschaft am FHI.

Die Rolle von Karbonaten und ihren Radikalen

Um die Prozesse auf der Katalysatoroberfläche und die Rolle der Hydratationsschichten besser zu verstehen, setzte Dr. Ya-Wei Zhou, Mitglied von Kleys Team, komplexe spektroskopische Techniken ein, darunter die oberflächenverstärkte Infrarot-Absorptionsspektroskopie mit abgeschwächter Totalreflexion (ATR-SEIRAS). „Dadurch konnten wir Karbonatradikale (CO3•–) nachweisen, die aus hydratisiertem Karbonat stammen. Während Karbonate die molekulare Ordnung der Hydratationsschichten auf den Grenzflächen erhöhen, fungieren die Radikale als Helfer beim Transfer von Protonen und erleichtern den Ladungstransfer zu Gold, wodurch die Wasserstoffentwicklung beschleunigt wird“, erklärt Zhou, Erstautor der Studie. Weitere Analysen mittels Differentialmassenspektrometrie (DEMS) ergaben, dass Karbonatradikale auch als Kohlenstoffquelle für die Entstehung von Formaldehyd dienen. Ergänzende spektroskopische Untersuchungen an isotopenmarkierten Proben und Simulationen mithilfe von Dichtefunktionaltheorie (DFT) durch das Team um Prof. Nuria Lopez am ICIQ in Tarragona (Spanien) bestätigten, dass Wasser und nicht Bikarbonat der primäre Protonendonor ist, was eine langjährige Kontroverse in der Literatur klärt.

Auswirkungen auf zukünftige Forschung

„Diese Ergebnisse liefern auf molekularer Ebene eine neue Perspektive auf das Wechselspiel zwischen CO2-Elektroreduktion und Wasserstoffentwicklung an Goldelektroden und drängen auf eine Neubewertung des Ursprungs der elektrokatalytischen Selektivität, die auf Materialsysteme wie Kupfer übertragen werden könnte, die komplexere Selektivitätstrends aufweisen“, sagt Prof. Beatriz Roldán Cuenya vom FHI. Die Studie zeigt, wie Karbonatmoleküle die lokale Umgebung an der Katalysatoroberfläche beeinflussen, und bietet so einen Ansatzpunkt für die Optimierung der Reaktionseffizienz und Selektivität der elektrokatalytischen CO2-Umwandlung – ein notwendiger Schritt für die Entwicklung effektiverer elektrokatalytischer Systeme für nachhaltige Energieanwendungen.

Kurzgefasst:

  • Karbonatmoleküle restrukturieren Wasserschichten auf der Oberfläche von Gold-Katalysatoren und beeinflussen so direkt die Umwandlung  von CO2.
  • Karbonatradikale dienen als Helfer beim Transfer von Protonen und auch als Kohlenstoffquelle für die Bildung von Aldehyden.
  • Wasser wird als primärer Protonendonor für die Elektroreduktion von CO2 und die Wasserstoffentwicklung bestätigt.

FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.