Synchrotron radiation sources: toolboxes for quantum technologies

A special look at the BESSY II experimental hall.

A special look at the BESSY II experimental hall. © Volker Mai/HZB

The new edition of the Hitchhiker's Guide to synchrotron and FEL light sources for quantum technology has just been published, in print and online.

The new edition of the Hitchhiker's Guide to synchrotron and FEL light sources for quantum technology has just been published, in print and online. © Anna Makarova/HZB

Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.

In quantum technologies, quantum physical principles such as superposition, interference and entanglement play a decisive role in their function. Components in quantum technology can perform calculations orders of magnitude more efficiently and encrypt information (quantum computing) or deliver unprecedented measurement accuracy in sensors. However, developing such components for practical use remains challenging because quantum systems are inherently sensitive to environmental disturbances, making precise control under normal conditions difficult. To make progress in this area and identify sources of error, it is essential that the materials and devices are thoroughly characterised and better understood.

Synchrotron and FEL radiation sources provide an ideal toolkit for this purpose. The available methods include non-destructive imaging, X-ray diffraction, spectroscopy, spectromicroscopy and investigations of electronic and magnetic nanostructures.

A team from HZB has written this overview together with colleagues from universities and other European synchrotron radiation sources.  

Note: 

The "Hitchhiker's Guide" to synchrotron and FEL light sources for quantum technology has been now printed and is available online ( www.helmholtz-berlin.de/srforqt ).

This brochure briefly  introduces key methods and applications while offering a detailed directory of European experimental stations particularly suited for research in quantum technologies along with access modes and contacts.


"Hitchhiker's Guide" to synchrotron and FEL light sources for quantum technology

Anna Makarova, Oliver Rader, Kristiaan Temst, Jean Daillant (eds.)

red.

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.