Spectroscopy@BAMline
Nondestructive testing in analytical chemistry
The hard X-ray beamline at BESSY II has been installed by BAM and PTB at a superconducting 7 T wavelength shifter. The main optical elements of the beamline are a double-multilayer monochromator (DMM) and a double-crystal monochromator (DCM). Depending on the application, the two devices are used separately or in-line. Depending on the requirements the used beam size varies between 1.5µm and 10mm.
The BAMline is specialized for nondestructive material characterization using different methods. At BAMline Spectroscopy the main applications of the monochromatic radiation with photon energies up to 60 keV is x-ray fluorescence analysis.
Selected Applications:- Measuring the elemental distributions in biological samples
- Determination of corrosion processes
- Real time analysis of catalytic reactions
Methods
EXAFS, NEXAFS, XRF, XRF Mapping, XRF, XRF Mapping
Remote access
depends on experiment - please discuss with Instrument Scientist
Instrument data | |
---|---|
Phone (~49 30 8062-) | |
Beam availability | 24h/d |
Source | 7T-WLS-1 (Wavelength Shifter, critical energy 13.5 keV at 1.7 GeV electron energy) |
Monochromator | Double Multilayer Monochromator (DMM) and/or Double Crystal Monochromator (DCM) |
Energy range (at experiment) | tbd |
Energy resolution |
|
Flux |
|
Polarisation | horizontal |
Focus size (hor. x vert.) | DMM: vert. 0.15 mm between 35 m and 45 m from source; DCM: hor. 0.25 mm at 37 m from source |
Temperature range | room temperature |
Pressure range | ambient |
Detector | Color X-Ray Camera pnCCD, e2V Si-Li, Bruker X-Flash, CCD, 4 elements SDD, optical microscope, sCMOS |
Manipulators | |
Sample holder compatibility | |
Additional equipment | Optical microscope for alignment purposes; microscopy images can be saved at every measurement coordinate for correlation of measured data and microscopy |
Additional information | Further details: beamline BAMline |
Following methods are available:
1) μ-XRF mapping in scanning mode. Resolution depends on the used optics and can be selected between 1.5 and 200µm. Primary beam energy range is 5keV-65keV.
2) μ-XRF mapping with color x-ray camera CXC. Fast one shot imaging with resolution between 10 and 50µm. Primary beam energy range is 5keV-35keV.
3) 3D XRF-Mapping. In slicing, or x-ray sheet microscopy, the excitation of the sample is realized with a thin sheet-beam and the detection with the CXC. The stepwise movement of the sample allows getting the element distribution for each layer with one measurement. These layers can be combined to a full 3D data set for each element afterwards. Since the information is collected layer per layer, there is no need to apply reconstruction techniques, which can be the reason for artifacts in the results.
4) EXAFS and XANES. The acquisition of the energy-dependent absorption spectra on selected position at the sample is possible in fluorescence and absorption mode. Time resolved experiments are possible down to second range.
5) Optical microscope is available for alignment purposes. The microscopy images can be saved at every measurement coordinate, so that the correlation between the measured data and the microscopy is rather simple.
Sample environments:
Different scanning environments for different sample sizes (from several micrometer to 150mm) are available at the beamline. Rotational units are available as well.
There is no vacuum environment available at the beamline, but it is possible to mount sample environments or reactors in the experimental hutch.
Temperature in experimental hutch is controlled.
Contact
For more information, please contact martin.radtke@bam.de (EXAFS, XANES, XRF).