Durchlässige Grenze - Tunneln erwünscht

Die Korngrenzen in bestimmten Dünnschicht-Materialien sind für Ladungsträger kein Hindernis. Vielmehr helfen sie dabei, Verluste beim Ladungstransport zu verringern. Forschern vom Helmholtz-Zentrum Berlin gelingt experimenteller Nachweis für eine gewagte Theorie.

Das Prinzip einer Solarzelle ist einfach: das auftreffende Sonnenlicht setzt Ladungsträger im Inneren des lichtaktiven Materials frei, und die Ladungsträger bewegen sich zu den angeschlossenen Kontakten. Kompliziert wird es, weil die Ladungsträger auf ihrem Weg mehrere Hindernisse überwinden müssen. Diese aus dem Weg zu räumen ist ein zentrales Anliegen der Photovoltaik-Forschung. Wissenschaftler vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben nun ein wichtiges physikalisches Grundpro­blem gelöst, das beim Konzipieren moderner Dünnschichtsolarzellen auftritt. Sie publizieren dies in der kommenden Ausgabe der Physical Review Letters (DOI: 10.1103/PhysRevLett.104.196602).

In Materialien, die aus vielen kleinen Kristallen - so genannten Körnern - bestehen, stellen die Korngrenzen Hindernisse dar. Trotzdem gibt es die Beobachtung, dass bei bestimmten Kupfer-Mineralen (Chalkopyrite) die einkristalline Form weniger effektiv den Strom leitet als die polykristallinen Materialien mit den vielen vorhandenen Korngrenzen. Warum das so ist, haben Michael Hafemeister und Sascha Sadewasser vom HZB zusammen mit Susanne Siebentritt von der Universität Luxemburg aufgeklärt. Sie haben nachgewiesen, dass sich an den Korngrenzen eine elektrische Barriere aufbaut, die die Ladungsträger aufgrund ihrer quantenmechanischen Eigenschaften durchtunneln können.

„Dass in den Chalkopyriten eine solche Barriere existieren muss, hat eine amerikanische Forschergruppe bereits 2003 mithilfe von Computersimulationen vorhergesagt. Wir haben nun im Experiment gezeigt, dass die Barriere tatsächlich existiert“, erläutert Sascha Sadewasser. 

Dies gelang mit einem experimentellen Trick: Michael Hafemeister und seine Kollegen haben einen Chalkopyrit-Kristall (Kupfer-Gallium-Diselenid) im Doppelpack gezüchtet, genauer gesagt: ein Kristallpaar, das zusammen wächst. Sie verwendeten dazu einen aus zwei großen Körnern bestehenden Gallium-Arsenid-Kristall als Unterlage und dampften eine Schicht aus Chalkopyrit auf. Die wachsende Schicht übernimmt dabei die Struktur des Gallium-Arsenid-Kristalls mit der Folge, dass man ein Modellsystem mit einer definierten Korngrenze erhält. Mit einer ganzen Batterie aufwändiger Messtechniken untersuchten die Physiker die Grenze und an der Grenze das Verhalten der elektrischen Ladungsträger. Unter anderem haben sie zum ersten Mal den elektrischen Widerstand zwischen den Kristalliten gemessen und dabei herausgefunden, dass die Barriere den Stromfluss mit rund einem halben Elek­tronenvolt gewaltig bremst.

Diese Messung brachte schließlich den entscheidenden Hinweis: „Ohne die Barriere hätte der elektrische Widerstand laut den physikalischen Gegebenheiten geringer sein müssen“, sagt Sascha Sadewasser. Das heißt, für die Stromleitung ist die Barriere zwar ein Hindernis, doch zugleich sorgt sie dafür, dass an der Stelle nicht so viele Ladungsträger – negativ geladene Elek­tronen und positiv geladene Atomrümpfe (Löcher) rekombinieren können. „In den Chalkopyriten sind natürlicherweise viele positive Ladungsträger vorhanden. Die Barriere sorgt dafür, dass sie sich nicht in der Nähe der Grenze aufhalten. Damit wird verhindert, dass die heranströmenden freien Elektronen, die durch den Lichteinfall erzeugt wurden, weggefangen werden“, erläutert Sadewasser. Die Elektronen können so ungestört durch die Barriere tunneln.     

Viele Grenzen, guter Stromfluss – dieses Geheimnis der polykristallinen Chalkopyrite ist somit aufgeklärt. Und möglicherweise kann man mit dieser Erkenntnis die Korngrenzen nun so modifizieren, dass der Wirkungsgrad der Solarzellen noch ein bisschen steigt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.