Hilfe von der dunklen Seite

Innerhalb von nur 7 Femtosekunden wird ein Elektron aus dem Eisen (III)-Komplex<br />durch Lichtanregung in ein neues Orbital verschoben. Dieses neue Orbital<br />entsteht durch Überlapp von Eisen- und Wasserorbital.

Innerhalb von nur 7 Femtosekunden wird ein Elektron aus dem Eisen (III)-Komplex
durch Lichtanregung in ein neues Orbital verschoben. Dieses neue Orbital
entsteht durch Überlapp von Eisen- und Wasserorbital.

Wissenschaftler können dank „Dark-Channel”-Fluoreszenz aufklären, wie biochemische Stoffe ihre Funktion ausüben

Spektroskopische Verfahren gehören zu den wichtigsten Methoden, mit denen Wissenschaftler ins Innere von Materialien schauen können. Sie benutzen dazu Lichtwellen, die mit der zu untersuchenden Probe in Wechselwirkung treten.

Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben nun mithilfe der Röntgenabsorptionsspektroskopie die Verschiebung von elektrischen Ladungen in gelösten Stoffen beobachtet, den sogenannten Elektronentransfer. Sogar Aussagen zum zeitlichen Ablauf des Prozesses sind möglich. Damit können sie auf mikroskopischer Skala herausfinden, wie zum Beispiel gelöste biochemische Stoffe ihre Funktion in ihrer natürlichen Umgebung ausüben.

Das HZB-Team um Emad Aziz berichtet darüber in der am 8. August erscheinenden online-Ausgabe der Zeitschrift Nature Chemistry  (DOI: 10.1038/NCHEM.768), wobei der Herausgeber die Arbeit als Highlight-Bericht hervor hebt.

Die Gruppe hat die Röntgenabsorptionsspektren von Eisen-Ionen sowohl in Eisenchlorid als auch in organischen Verbindungen wie zum Beispiel dem aktiven Zentrum des Blutbestandteils Hämoglobin, dem Hämin, untersucht und einen bislang nicht erklärbaren negativ erscheinenden Peak – als Dip bezeichnet - in den Spektren analysiert.
Bei der Röntgenabsorptions-Spektroskopie wird die Probe mit monochromatischem Röntgenlicht bestrahlt. Wenn die Energie des eingestrahlten Lichts gera-de mit einem energetischen Übergang im Molekül übereinstimmt, können Elekt-ronen aus ihrem Grundniveau in ein energetisch höheres Niveau angeregt werden. Bei der Rückkehr in ihren Ausgangszustand wird die zugeführte Energie wieder abgegeben, zum Beispiel durch Aussenden von Fluoreszenzlicht. Indem Wissenschaftler dieses Fluoreszenzlicht aufzeichnen, gewinnen sie Aufschluss über die elektronische Orbitalstruktur von Atomen und Molekülen.
Emad Aziz und seine Kollegen haben durch Messungen mit Synchrotronlicht an der Strahlungsquelle BESSY II herausgefunden, dass einige gelöste Stoffe nach Anregung kein Fluoreszenzlicht aussenden. Der im Spektrum negativ erscheinende Peak erwies sich als Beleg dafür, dass die Rückkehr in das Grundniveau strahlungslos über einen sogenannten dunklen Kanal stattfindet, was auch als „dark channel“ bezeichnet wird.
Dies passiert, weil durch Wechselwirkung miteinander die Moleküle der Probe und die des Lösungsmittels gemeinsame Orbitale bilden. Die angeregten Elek¬tronen werden in dieses Orbital transferiert. „Dies funktioniert, weil sich die Molekülorbitale der Ei¬sen¬¬- und der Wasserionen räumlich sehr nahe kommen und energetisch gut zusammenpassen“, erläutert Emad Aziz, Leiter einer Nach-wuchsgruppe am HZB. Die Elektronen verweilen in diesem neuen Niveau länger als in einem normalen Molekülorbital. Ihr Energiezustand verhindert daher die Aussendung des normalerweise zu erwartenden Fluoreszenzlichtes.
Die Dips im Spektrum geben damit Aufschluss über die Art der Wechselwirkung zwischen Probe und Lösungsmittel. In biochemischen Systemen wie zum Bei-spiel Proteinen kann man mithilfe dieses Prozesses nun untersuchen, in wie weit das Lösungsmittel zur Funktionalität beiträgt.
Solche ultraschnellen Vorgänge wie Ladungstransfers lassen sich mit den bisher üblichen Methoden nur mit sehr großem Aufwand beobachten. Nun haben die HZB-Forscher einen Weg gefunden, die Dynamik des Prozesses mithilfe einer einfachen Methode aufzuklären. „Wir können beobachten, wo die Ladungen hinwandern und wir können sehen, dass dies innerhalb von wenigen Femtose-kunden passiert“, betont Emad Aziz. Außerdem hat das Ergebnis große Bedeu-tung für die Interpretation von Röntgenabsorptionsspektren generell. 
Für ihre Experimente hat die Gruppe die selbst entwickelte Fließzelle genutzt, mit der es auch möglich ist, biologische Proben in ihrer natürlichen Umgebung – das heißt, in gelöster Form – mit Röntgenstrahlung zu untersuchen.

Originalarbeit in Nature Materials: DOI: 10.1038/NCHEM.768

IH


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.