LiXEdrom: Innovative measuring chamber for X-ray study of liquid jets

Close-up of the liquid-jet.

Close-up of the liquid-jet.

Schematic drawing of the LiXEdrom setup for X-ray <br /> absorption and X-ray emission <br /> spectroscopy on the liquid-jet

Schematic drawing of the LiXEdrom setup for X-ray
absorption and X-ray emission
spectroscopy on the liquid-jet

Until now, the only way to study liquids by soft X-ray emission spectroscopy (XES) has been through a membrane window. Now, researchers of Helmholtz-Zentrum Berlin have carried out an XES study of a free micro-liquid jet on the synchrotron.

X-rays are the medium of choice for many scientific studies. When you shine them on a sample, they literally shed light on the material’s structure, providing loads of information about it. Unfortunately, this mostly applies to solids only, since the sample has to be in a vacuum for the entire time it is being irradiated with soft X-rays. For liquids, that means you have to remove all the water. In the case of biological samples such as proteins, however, this destroys their natural environment. The solution to this problems has always been to measure liquids through membranes. These membranes keep the evacuated side separate from the non-evacuated side. The trouble is, one can never really be sure whether or not membrane effects are distorting the measurement results.

At Helmholtz-Zentrum Berlin (HZB), Emad Aziz, head of a junior research group, has shown that liquids can be investigated by X-ray emission spectroscopy without using membranes after all. At the synchrotron source BESSY II, the group has built a special setup – the LiXEdrom. It is unique in that the liquid is shot as a jet through the X-ray beam. The jet from the nozzle becomes so thin and, at 80 metres per second, so fast that the vacuum can be maintained without the need of a membrane.

“On our LiXEdrom, we create a vacuum in the liquid chamber of up to 10-6 millibar, and can now perform both absorption and emission measurements, giving us even more precise information about the structure of a material,” says Emad Aziz. It also allows a clear “view” of elements that possess absorption and emission energies similar to the energies of the membrane materials, and would therefore overlap with the membrane in the spectrum when measured. This concerns above all carbon and nitrogen – precisely those elements of interest in biological samples.

In their first measurements, published in Chemical Physics (DOI: 10.1016/JChemPhys.2010.08.023) and selected for the cover, the group demonstrated they can achieve energy resolutions on their LiXEdrom comparable to those of the latest high resolution XES spectrometers. For water, they have proven that results obtained from an earlier setup were not overlapped by disturbing membrane effects. They have also studied the electronic structure of nickel ions, unhampered by a risk of deposits on a membrane wall distorting the results. For many applications such as protein studies, this is a significant step towards obtaining reliable structural information.

Original paper in Chem. Phys., DOI 10.1016/JChemPhys.2010.08.023
„High Resolution X-ray Emission Spectroscopy of Water and Aqueous Ions Using the Micro-Jet Technique”, K.M. Lange et al.

IH


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.