Terahertzblitze ermöglichen exakte Röntgenmessungen

Die Wissenschaftler trennen mit Hilfe eines Spiegels den<br />R&ouml;ntgenpuls (blau) vom Terahertzpuls (rot). Der R&ouml;ntgenblitz<br />tritt dabei durch ein zehn Millimeter kleines &bdquo;Loch&ldquo; in der<br />Mitte des Spiegels hindurch.

Die Wissenschaftler trennen mit Hilfe eines Spiegels den
Röntgenpuls (blau) vom Terahertzpuls (rot). Der Röntgenblitz
tritt dabei durch ein zehn Millimeter kleines „Loch“ in der
Mitte des Spiegels hindurch. © HZB/DESY

Gemeinsame Pressemitteilung des Helmholtz-Zentrums Berlin, des Forschungszentrums DESY und der European XFEL GmbH

Wissenschaftler entwickeln eine Methode, um Prozesse mit hochintensiven ultrakurzen Röntgenpulsen bis auf wenige Femtosekunden genau zu untersuchen

Viele physikalische und chemische Vorgänge laufen in extrem kurzer Zeit und auf extrem kleinen Längenskalen ab, in der Regel in Zeiten von billiardstel Sekunden und auf Längen von milliardstel Metern. Um solche Phänomene zu untersuchen, nutzen Forscher intensive ultrakurze Röntgenblitze. Denn aus der Fotografie weiß man: Je schneller ein Vorgang abläuft, desto kürzer muss die Belichtung sein, die diesen sichtbar macht.

Forscher erzeugen solche intensiven, ultrakurzen Röntgenblitze in großen Forschungsanlagen, sogenannten Freie-Elektronen-Lasern. Eine in Hamburg und Berlin entwickelte neue Methode ermöglicht es nun die Zeitauflösung dieser Großgeräte voll auszureizen. Die Forschergruppe von DESY, HZB, der European XFEL GmbH und  des Helmholtz-Institut Jena stellt ihre Ergebnisse in der aktuellen online-Ausgabe von „Nature Photonics“ (DOI: 10.1038/NPHOTON.2010.311) vor.

Röntgenblitze zu erzeugen, die nur wenige Femtosekunden (Millardster Teil einer millonstel Sekunde) lang sind, ist seit einigen Jahren möglich. Sie können beispielsweise von Freie-Elektronen-Lasern (FEL) wie FLASH am Forschungszentrum DESY in Hamburg, LCLS in Stanford (USA) oder dem im Bau befindlichen Röntgenlaser European XFEL erzeugt werden. Tatsächliche Experimente waren aber bislang nur mit einer Auflösung von typischerweise etwa hundert Femtosekunden möglich – also zwei Größenordnungen schlechter als die erzielten Pulsdauern. Das Problem war, genau zu bestimmen, wann die Röntgenpulse im Experiment ankommen.

Eine Gruppe aus Wissenschaftlern des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB), des DESY, der European XFEL GmbH und des Helmholtz-Institut Jena hat nun einen Weg gefunden, die Ankunftszeit von Röntgenpulsen mit einer Genauigkeit von weniger als zehn Femtosekunden zu messen. Die Methode basiert auf einer sogenannten Kreuzkorrelation.

Die neue Methode wurde am Freie-Elektronen-Laser FLASH für sogenannte „Pump-Probe“-Verfahren entwickelt. Dabei löst ein erster ultrakurzer Pump-Puls beispielsweise eine photochemische Reaktion aus. Ein zweiter Puls aus Röntgenlicht „fotografiert“, wie sich die Reaktion entwickelt. Forscher können nun genau bestimmen, zu welchem Zeitpunkt das Bild durch den zweiten Puls entsteht.

Die Wissenschaftler nutzen bei ihrer neuen Methode hierfür einen Nebeneffekt der Röntgenpulserzeugung: Das in FLASH beschleunigte Elektronenpaket sendet, neben dem Röntgenblitz, gleichzeitig einen intensiven Terahertzblitz aus. Die Wissenschaftler trennen beide Blitze mit Hilfe eines gelochten goldbeschichteten Spiegels voneinander. Da beide Pulse zur gleichen Zeit und vom gleichen Elektronenpaket erzeugt werden, dient der Terahertzblitz als zeitlicher „Marker“ des Röntgenlichtblitzes, der als Zeitreferenz genutzt wird. So gelang es den Forschern, bis auf sieben Femtosekunden genau zu bestimmen, wann der Röntgenlichtblitz die Probe erreicht.

Die neue Methode kann nun mit sehr geringen Modifikationen an allen bestehenden und geplanten neuen FEL-Quellen angewendet werden. In Kombination mit entsprechenden Experimenten eröffnet sie die Möglichkeit, das Potenzial dieser Großgeräte voll auszuschöpfen. Erstmals können Phänomene nun auf der relevanten Femtosekunden-Zeitskala mit Röntgenpulsen untersucht werden. Darauf haben Wissenschaftler lange gewartet.

Dr. Michael Gensch, der die Arbeiten federführend am HZB und bei DESY betreut hat, ist mittlerweile am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) tätig. Er baut dort an der Strahlungsquelle ELBE neue Experimente mit hochintensiver Terahertz-Strahlung auf.

Dr. Michael Gensch
Helmholtz-Zentrum Dresden-Rossendorf
Institute of Radiation Physics/Institute of Ion Beam Physics and Materials Research

m.gensch@hzdr.de, Tel: +49 351 260 2464

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Nachricht
    13.12.2024
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung
    Auf dem diesjährigen Nutzertreffen zeichnete  der Freundeskreis des HZB die herausragende Promotionsarbeit von Dr. Dieter Skroblin von der Technischen Universität Berlin mit dem Ernst-Eckhard-Koch-Preis aus. Der Europäische Innovationspreis Synchrotronstrahlung ging an Dr. Manfred Faubel vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen und Dr. Bernd Winter vom Fritz-Haber-Institut in Berlin.