MX-Posterprize to Bartosz Sekula, Lodz

On the photo are shown from left to right <br />Manfred Weiss (HZB-MX), Bartosz Sekula (Lodz),<br />
Uwe Mueller (HZB-MX) and Anna Bujacz,<br /> Bartosz' Ph.D. supervisor.

On the photo are shown from left to right
Manfred Weiss (HZB-MX), Bartosz Sekula (Lodz),
Uwe Mueller (HZB-MX) and Anna Bujacz,
Bartosz' Ph.D. supervisor.

The prize for the best poster in the field of macromolecular crystallography was awarded to
Bartosz Sekula from the University of Lodz (Poland). The poster committee unanimously selected the poster titled "Complexes of equine serum albumin with ligands" as this year's best poster in MX.


arö

You might also be interested in

  • HZB receives funding to make innovations usable more quickly
    News
    23.03.2023
    HZB receives funding to make innovations usable more quickly
    The Helmholtz Association has selected three new innovation platforms that will now be funded. HZB is involved in two of them: The Innovation Platform on Accelerator Technologies HI-ACTS is intended to open up modern accelerators for a wide range of applications, while the Innovation Platform Solar TAP is intended to bring new ideas from the laboratories of photovoltaics research more quickly into an application. In total, HZB will receive 4.2 million euros in grants from the Pact for Research and Innovation over the next three years.


  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.