Graphene on Nickel: Electrons behave like light
In a graphene sheet on nickel, every other
carbon atom is strongly bonded to the nickel atom
which it sits on top of while its neighboring
carbon atoms do not face nickel atoms.
This atomic arrangement breaks the original
lattice symmetry. © STM, A. Varykhalov, HZB
Dr. Andrei Varykhalov and his colleagues in the group of Prof. Dr. Oliver Rader investigated at BESSY II the electronic properties of nickel coated with graphene and achieved an astonishing result. They could show that the conduction electrons of the graphene behave rather as light than as particles. Physicists had originally expected such behavior only for freestanding graphene layers which show a perfect honeycomb structure and not for graphene on nickel which disturbs the perfect hexagonal symmetry. Their results are supported by calculations of two theoretical groups using novel concepts. Their report was published in the open access journal, Phys. Rev. X, the new top journal of the Physical Review.
Employing photoelectron spectroscopy at BESSY II, the physicists were able to establish so-called Dirac cones of massless fermions, which prove the light-like behavior. After their experiments, they could enlist two theoretical groups for supporting their results by contributing new explanations to today's publication. “These results are surprising” says Varykhalov, the reason being that the nickel atoms interact in two different and mutually compensating ways with the carbon atoms of the graphene. On the one hand, they destroy the perfect hexagonal symmetry of the graphene lattice. On the other hand they provide the graphene layer with extra electrons - which compensates for the “damage” inflicted upon the graphene by disturbing the lattice. “We uncovered a fundamental mechanism that is interesting for possible applications” says Varykhalov adding that graphene is usually supported by such a substrate and that the extra electrons for “healing” could as well be supplied by an electrical voltage.
http://prx.aps.org/
A. Varykhalov et al. , Phys. Rev. X 2, 041017
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13643;sprache=en
- Copy link
-
Innovative battery electrode made from tin foam
Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.
-
BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
In a small manganese oxide cluster, teams from HZB and HU Berlin have discovered a particularly exciting compound: two high spin manganese centres in two very different oxidation states and. This complex is the simplest model of a catalyst that occurs as a slightly larger cluster in natural photosynthesis, where it enables the formation of molecular oxygen. The discovery is considered an important step towards a complete understanding of photosynthesis.
-
Lithium-sulphur pouch cells investigated at BESSY II
A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.