Graphene on Nickel: Electrons behave like light

In a graphene sheet on nickel, every other <br />carbon atom is strongly bonded to the nickel atom <br />which it sits on top of while its neighboring <br />carbon atoms do not face nickel atoms.<br /> This atomic arrangement breaks the original<br /> lattice symmetry.

In a graphene sheet on nickel, every other
carbon atom is strongly bonded to the nickel atom
which it sits on top of while its neighboring
carbon atoms do not face nickel atoms.
This atomic arrangement breaks the original
lattice symmetry. © STM, A. Varykhalov, HZB

Dr. Andrei Varykhalov and his colleagues in the group of Prof. Dr. Oliver Rader investigated at BESSY II the electronic properties of nickel coated with graphene and achieved an astonishing result. They could show that the conduction electrons of the graphene behave rather as light than as particles. Physicists had originally expected such behavior only for freestanding graphene layers which show a perfect honeycomb structure and not for graphene on nickel which disturbs the perfect hexagonal symmetry. Their results are supported by calculations of two theoretical groups using novel concepts. Their report was published in the open access journal, Phys. Rev. X, the new top journal of the Physical Review.

Employing photoelectron spectroscopy at BESSY II, the physicists were able to establish so-called Dirac cones of massless fermions, which prove the light-like behavior. After their experiments, they could enlist two theoretical groups for supporting their results by contributing new explanations to today's publication.  “These results are surprising” says Varykhalov, the reason being that the nickel atoms interact in two different and mutually compensating ways with the carbon atoms of the graphene. On the one hand, they destroy the perfect hexagonal symmetry of the graphene lattice. On the other hand they provide the graphene layer with extra electrons - which compensates for the “damage” inflicted upon the graphene by disturbing the lattice. “We uncovered a fundamental mechanism that is interesting for possible applications” says Varykhalov adding that graphene is usually supported by such a substrate and that the extra electrons for “healing” could as well be supplied by an electrical voltage.


http://prx.aps.org/

A. Varykhalov et al. , Phys. Rev. X 2, 041017

You might also be interested in

  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.