Graphene on Nickel: Electrons behave like light

In a graphene sheet on nickel, every other <br />carbon atom is strongly bonded to the nickel atom <br />which it sits on top of while its neighboring <br />carbon atoms do not face nickel atoms.<br /> This atomic arrangement breaks the original<br /> lattice symmetry.

In a graphene sheet on nickel, every other
carbon atom is strongly bonded to the nickel atom
which it sits on top of while its neighboring
carbon atoms do not face nickel atoms.
This atomic arrangement breaks the original
lattice symmetry. © STM, A. Varykhalov, HZB

Dr. Andrei Varykhalov and his colleagues in the group of Prof. Dr. Oliver Rader investigated at BESSY II the electronic properties of nickel coated with graphene and achieved an astonishing result. They could show that the conduction electrons of the graphene behave rather as light than as particles. Physicists had originally expected such behavior only for freestanding graphene layers which show a perfect honeycomb structure and not for graphene on nickel which disturbs the perfect hexagonal symmetry. Their results are supported by calculations of two theoretical groups using novel concepts. Their report was published in the open access journal, Phys. Rev. X, the new top journal of the Physical Review.

Employing photoelectron spectroscopy at BESSY II, the physicists were able to establish so-called Dirac cones of massless fermions, which prove the light-like behavior. After their experiments, they could enlist two theoretical groups for supporting their results by contributing new explanations to today's publication.  “These results are surprising” says Varykhalov, the reason being that the nickel atoms interact in two different and mutually compensating ways with the carbon atoms of the graphene. On the one hand, they destroy the perfect hexagonal symmetry of the graphene lattice. On the other hand they provide the graphene layer with extra electrons - which compensates for the “damage” inflicted upon the graphene by disturbing the lattice. “We uncovered a fundamental mechanism that is interesting for possible applications” says Varykhalov adding that graphene is usually supported by such a substrate and that the extra electrons for “healing” could as well be supplied by an electrical voltage.


http://prx.aps.org/

A. Varykhalov et al. , Phys. Rev. X 2, 041017

  • Copy link

You might also be interested in

  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.