Water fluctuations mediate lock-and-key fit

With the help of computer simulation, researchers have been<br />able to calculate the movements and forces between <br />water molecules (small, red-and-white dipoles), a ligand (shown in green),<br />and the protein molecule's water-repellant hollow pocket.

With the help of computer simulation, researchers have been
able to calculate the movements and forces between
water molecules (small, red-and-white dipoles), a ligand (shown in green),
and the protein molecule's water-repellant hollow pocket.

Without water, life as we know, it would not exist. Nearly every biological binding process that takes place within a cell requires the presence of an aqueous environment. Here, tiny molecules called ligands fit like "keys" into their matching "locks" - docking sites on larger protein molecules. This in turn activates signals or leads to the production of some other substance by the cell. But what was previously unclear, was the part water plays in all this. Is water merely a passive transport medium or does it perform other, more active jobs as well? Now, HZB's own Prof. Dr. Joachim Dzubiella and a team of physicists have looked for answers to this question using a computer simulated model system. In the process, they discovered that water is capable of actively influencing the docking speed of the ligand through subtle interactions with other molecules' unique geometry and surface topography. Their findings could become important in drug delivery.

Together with his colleagues at the TU Munich, UC San Diego, and the University of Utah, Dzubiella has modeled a small ligand molecule docking to a protein binding pocket and then calculated the various movements and forces involved in this process. In their work, the researchers went on the assumption that the protein pocket's surface was hydrophobic. When tiny water molecules tried to enter the protein pocket, they were repelled by the hydrophobicity of its surface. This in turn produced a small wave, which swept up the ligands in the area. "This is exciting news”, says Dzubiella, “because it seems that proteins can use their local geometry and polarity to create well-controlled hydrodynamic fluctuations which accelerate or decelerate approaching ligands.” These results add not only to our fundamental understanding of biological binding processes but will be helpful for the design of biomolecules and drugs in biomedical and biomaterial applications.

The results have been published in the renowned PNAS.

arö

  • Copy link

You might also be interested in

  • New department at HZB: ‘AI and Biomolecular Structures’
    News
    07.07.2025
    New department at HZB: ‘AI and Biomolecular Structures’
    Since 1 July 2025, Dr. Andrea Thorn has been setting up the new AI and Biomolecular Structures department at HZB. A biophysicist with many years of experience in AI-based tools for structural biology, she is looking forward to collaborating closely with the macromolecular crystallography team at the MX beamlines of BESSY II.
  • BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    Science Highlight
    20.02.2025
    BESSY II: Building block of the catalyst for oxygen formation in photosynthesis reproduced
    In a small manganese oxide cluster, teams from HZB and HU Berlin have discovered a particularly exciting compound: two high spin manganese centres in two very different oxidation states and. This complex is the simplest model of a catalyst that occurs as a slightly larger cluster in natural photosynthesis, where it enables the formation of molecular oxygen. The discovery is considered an important step towards a complete understanding of photosynthesis.
  • Protons against cancer: New research beamline for innovative radiotherapies
    News
    27.11.2024
    Protons against cancer: New research beamline for innovative radiotherapies
    Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.