Schnelle Entmagnetisierung durch Spintransport

Dass ein ultrakurzer Laserpuls eine ferromagnetische Schicht im Nu entmagnetisieren kann, ist seit etwa 1996 bekannt. Doch wie diese Entmagnetisierung funktioniert, ist noch nicht verstanden. Nun haben die Physikerin Dr. Andrea Eschenlohr und ihre Kollegen vom Helmholtz-Zentrum Berlin und der Universität Uppsala in Schweden gezeigt, dass es offenbar nicht der Lichtpuls selbst ist, der die Entmagnetisierung bewirkt.

Sie bestrahlten dafür zwei unterschiedliche Schichtsysteme mit extrem kurzen Laserpulsen von nur hundert Femtosekunden (10–15 s). Während eine Probe im Wesentlichen aus einer dünnen ferromagnetischen Nickelschicht bestand, war in der anderen Probe diese Nickelschicht von einer unmagnetischen Goldschicht bedeckt. Obwohl sie nur 30 Nanometer (10-9m) dick war, schluckte die Goldschicht den Großteil des Laserlichts, in der Nickelschicht kam kaum noch Licht an. Dennoch nahm die Magnetisierung der Nickelschicht kurz nach dem Eintreffen des Laserpulses in beiden Proben rasch ab, bei der goldbeschichteten Probe allerdings um Sekundenbruchteile später. Dies konnten die Forscher durch Messungen mit zirkular polarisierten Femtosekunden-Röntgenpulsen beobachten, die sie am Femtoslicing-Strahlrohr am Berliner Elektronenspeicherring BESSY II durchführten, den das HZB betreibt.

„Wir konnten damit experimentell zeigen, dass dabei die ultraschnelle Entmagnetisierung nicht durch das Licht selbst bewirkt wird, sondern durch heiße Elektronen, die der Laserpuls erzeugt“, erklärt Andrea Eschenlohr. Die so angeregten Elektronen können sich über kurze Distanzen, also durch die hauchdünne Goldschicht, extrem rasch bewegen. Sie transportieren damit ihr magnetisches Moment (den „Spin“) auch in die ferromagnetische Nickelschicht, so dass dort die vorherrschende magnetische Ordnung zusammenbricht. „Eigentlich wollten wir sehen, wie wir die Spins mit dem Laserpuls beeinflussen können“, erklärt der Leiter des Experiments Dr. Christian Stamm. „Dass wir aber direkt beobachten konnten, wie diese Spins wandern, war eine Überraschung.“

Laserpulse sind damit eine Möglichkeit, gezielt „Spinströme“ zu erzeugen, bei denen Spin an Stelle von elektrischer Ladung übertragen wird. Diese Beobachtung ist für das Forschungsgebiet der Spintronik interessant. Dabei entwerfen Forscher neue Bauelemente aus magnetischen Schichtsystemen, die mit Spins anstatt mit Elektronen „rechnen“ und dadurch Informationen extrem schnell und energiesparend verarbeiten und speichern können.

Dr. Andrea Eschenlohr war bis Ende 2012 am HZB beschäftigt, wo sie die hier vorgestellten Ergebnisse im Rahmen ihrer Doktorarbeit erzielte. Sie ist seit Januar als wissenschaftliche Mitarbeiterin an der Universität Duisburg-Essen tätig.

Die Arbeit “Ultrafast spin transport as key to femtosecond demagnetization” wurde am 27.1.2012 in Nature Materials veröffentlicht.
http://dx.doi.org/10.1038/NMAT3546

Dr. Andrea Eschenlohr
Universität Duisburg-Essen
Tel.: +49 (0)203 379-4531
andrea.eschenlohr@uni-due.de

Die Dissertation von Andrea Eschenlohr ist nun online im Open Access abrufbar.

((doi: http://dx.doi.org/10.5442/d0033))

arö


Das könnte Sie auch interessieren

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.