Titanium dioxide nanoreactor

The titanium dioxide nanoparticles crystallize in a polymer network at room temperature.

The titanium dioxide nanoparticles crystallize in a polymer network at room temperature.

Tiny particles of titanium dioxide are found as key ingredients in wall paints, sunscreens, and toothpaste; they act as reflectors of light or as abrasives. However with decreasing particle size and a corresponding change in their surface-to-volume ratio, their properties change so that crystalline titanium dioxide nanoparticles acquire catalytic ability: Activated by the UV component in sunlight, they break down toxins or catalyze other relevant reactions.

Now, Dr. Katja Henzler and a team of chemists at the Helmholtz Centre Berlin have developed a synthesis to produce nanoparticles at room temperature in a polymer network. Their analysis, conducted at BESSY II, Berlin's synchrotron radiation source, has revealed the crystalline structure of the nanoparticles. This represents a major step forward in the usage of polymeric nanoreactors since, until recently, the nanoparticles had to be thoroughly heated to get them to crystallize. The last synthesis step can be spared due to the special environment inside the PNIPAM network.

The Henzler team's polymeric nanoreactors consist of a polystyrene core surrounded by a network of PNIPAM chains. A titanium compound was added to an ethanolic solution of the polymer colloids, which did trigger the formation of small titanium dioxide particles within the PNIPAM network. The BESSY II experiments showed that the chemists were able to control the speed of these processes while at the same time affecting the quality of the nanocrystals that had formed.

Using the novel combination of x-ray microscopy and spectroscopy (NEXAFS-TXM, U41-SGM) at BESSY II, Henzler and the microscopy team were able to show that the nanoparticles are homogeneously distributed over the polymeric nanoreactors. The researchers examined their samples in a cryogenic aqueous environment, which prevents artifact formation due to sample drying. Their analysis showed that the nanoparticles have a crystalline structure. "The nanocrystals have a tetragonal anatase structure and this crystalline structure is a key to their catalytic performance. Additionally, our new analytic method allows us to control the quality of the synthesized particles so that we can optimize them for relevant applications," says Katja Henzler. 

 

Nano Letters, 2013, 13 (2), pp 824–828;

DOI: 10.1021/nl3046798

 

 

You might also be interested in

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • RBB Abendschau on visit at CatLab
    News
    01.08.2022
    RBB Abendschau on visit at CatLab
    CatLab got a visit from the rbb Abendschau.
    Under the title "Der Weg weg vom Erdgas" (The way away from natural gas), the programme was broadcast on Sunday, 31st July in the rbb Abendschau and will be available in the rbb media library for 7 days.