Erster Spatenstich für EMIL
Mit den ersten Spatenstichen wurde auch die Zeitkapsel vergraben. Mit im Bild sind Klaus Lips, Anke Kaysser-Pyzalla, Birgit Schröder-Smeibidl, Markus Hammes, Bernd Rech, Axel Knop-Gericke (CAT-Projektleiter vom Fritz-Haber-Institut der MPG) und Thomas Frederking. Foto: Andreas Kubatzki/HZB
Neben der Tageszeitung vom 5.8.2013 und den EMIL-Bauplänen werden Archäologen der Zukunft in dieser Zeitkapsel auch einige Proben von Dünnschicht-Solarzellen aus 2013 finden. Foto: Andreas Kubatzki/HZB
Mit einem feierlichen Spatenstich haben am Montag, den 5. August 2013 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II begonnen: Das „Energy Materials In-Situ Laboratory Berlin“ wird als hochmodernes Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung direkt an BESSY II angebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft wird eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.
„Der Bau von EMIL ist ein klares Zeichen für den Ausbau der Energieforschung am HZB. Solche einzigartigen Infrastrukturen sind eine wichtige Voraussetzung, um raschere Fortschritte in Energietechnologien zu erreichen“, sagte Prof. Anke-Rita Kaysser-Pyzalla, wissenschaftliche Geschäftsführerin des HZB. Sie dankte allen Beteiligten am HZB, dem Projektträger Jülich und den Zuwendungsgebern, aber auch den zuständigen Behörden für ihr großes Engagement bei der Vorbereitung und Betreuung des Bauprojekts.
Der Projektleiter Prof. Klaus Lips verwies in seiner Ansprache auf den jungen Helden in Erich Kästners Kinderklassiker „Emil und die Detektive“, der für die Mission des neuen Labors steht. „So wie Emil sich Verbündete gesucht hat, geht es auch hier darum, ein schlagkräftiges Team zu bilden und mit wissenschaftlicher Detektivarbeit die Verluste in Solarzellen dingfest zu machen“, so Lips. „Ab 2015 können wir in EMIL unter realen Bedingungen schon während der Herstellung von Dünnschicht-Solarzellen oder Katalysatoren analysieren, welche Prozesse an Grenzflächen ablaufen und diese sogar tiefenaufgelöst betrachten.“
Zur Gestaltung des Gebäudes erklärte der leitende Architekt Markus Hammes: „ Wir haben uns bewusst dafür entschieden, das EMIL-Gebäude an die Formsprache des Speicherrings anzulehnen, EMIL wird wie eine herausgeschobene Schublade als integraler Bestandteil des BESSY II-Gebäudes erscheinen, aber mit eigener Aufgabe.“
Im Anschluss füllte Dr. Gerd Reichardt, der als technischer Projektmanager EMIL betreut, eine Zeitkapsel aus massivem Edelstahl: nicht nur mit dem Roman von Erich Kästner, der aktuellen Tageszeitung und den Bauplänen, sondern auch mit einigen Proben moderner Dünnschicht-Photovoltaik, die unter dem Baugrundstück vergraben wurde. Ende 2013 soll schon das Richtfest stattfinden, damit Ende 2014 die Labore bezugsfertig sind.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13771;sprache=de/
- Link kopieren
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
-
Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).