World Record Solar Cell with 44.7% Efficiency

World record solar cell with 44.7% efficiency, made up of four solar subcells based on III-V compound semiconductors for use in concentrator photovoltaics. ©Fraunhofer ISE

World record solar cell with 44.7% efficiency, made up of four solar subcells based on III-V compound semiconductors for use in concentrator photovoltaics. ©Fraunhofer ISE

With a solar cell efficiency of 44.7%, scientists around Dr. Frank Dimroth at the Fraunhofer Institute for Solar Energy Systems ISE achieved a new world record for the conversion of sunlight into electricity. They used a new solar cell structure with four solar subcells, a new procedure called wafer bonding and optical components which concentrate the sunlight (Concentrated Photovoltaics CPV). Part of the cell structure was developed at the Helmholtz Zentrum Berlin in the research group of Prof. Thomas Hannappel, (now with Technical University Ilmenau). They developed methods to prepare critical interfaces and to avoid undesirable defects. SOITEC and CEA-Leti have as well contributed to this world record.

An efficiency of 44.7% was measured at a concentration of 297 suns. This indicates that 44.7% of the solar spectrum`s energy, from ultraviolet through to the infrared, is converted into electrical energy. Concentrator photovoltaics  has the potential to achieve twice the efficiency of conventional PV power plants in sun-rich locations of the globe.

Further Information:
www.ise.fraunhofer.de

arö

  • Copy link

You might also be interested in

  • New Helmholtz Young Investigator Group at HZB on perovskite solar cells
    News
    26.06.2025
    New Helmholtz Young Investigator Group at HZB on perovskite solar cells
    Silvia Mariotti starts building up the new Helmholtz Young Investigator Group ‘Perovskite-based multi-junction solar cells’. The perovskite expert, who was previously based at Okinawa University in Japan, aims to advance the development of multi-junction solar cells made from different perovskite layers.
  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.