At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

The participants.

The participants.

The Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” is striving for a holistic view of material properties

In the heart of Berlin, 85 scientists came together on the occasion of an international conference in order to network as part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” and gain new impulses for future research. The focus was on examining ultrafast dynamics within a broad material spectrum from molecules to nanostructures to strongly correlated solids. The conference took place from September 16 through 20 at the German Physical Society’s Magnus House in Berlin.

Using X-ray methods, the scientists are striving for a holistic view of different systems' properties determined by interactions among internal degrees of freedom and their interactions with the environment. The invited presentations covered the whole spectrum – from experimental aspects all the way to theoretical models. In that sense, the meeting of these different experts on the occasion of this conference was decidedly unique – and one of the virtual institute's key objectives. As such, every researcher from every available free electron laser (FEL) in the field of X-rays was represented. Over the last several years, FELs have established themselves as the single most important tool in the X-ray based study of ultrafast dynamics of matter. The SLAC’s Prof. Jo Stöhr gave a passionate talk on the major differences between interactions with matter of synchrotron light and FEL X-rays, respectively.

Stöhr is also scheduled to give a “Distinguished Lecture” on December 9, 2013, at the Helmholtz Zentrum Berlin.

The scientific scope of the conference included sessions on specific material classes and experimental techniques with a focus on:
- quantum materials, magnetism, and correlated solids
- molecular dynamics in physical chemistry and catalysis
- interactions of X-ray photons with matter
- atomic structural analysis using coherent scattering, diffraction and imaging

Attendees considered the poster session, where 26 submissions from junior researchers were being exhibited, a particular success. The posters helped reinforce the virtual institute’s breadth of research topics and prompted discussions.

As part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes,” scientists from the HZB, DESY, and from two German universities are together doing research on complex materials in collaboration with both national and international partners.  Prof. Dr. Alexander Föhlisch is the spokeman of the virtual Helmholtz institute and leads the "Institute Methods and Instrumentation for Synchrotron Radiation Research" at HZB.

(sz)


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.

  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.