New Materials for Photovoltaics: HZB starting its first own Graduate School

Prof. Susann Schorr with participants of Graduate School MatSEC

Prof. Susann Schorr with participants of Graduate School MatSEC

Well-structured Ph.D. program

New HZB Graduate School: Ph.D. candidates to study materials for energy conversion

Yesterday’s workshop was the official starting signal for the opening of the Helmholtz Center Berlin’s new Materials for Solar Energy Conversion (MatSEC) Graduate School. MatSEC is the first HZB graduate training program for the Center’s doctoral students. The school is located at the Dahlem Research School (DRS) of the Freie Universität Berlin (FU Berlin). Up to ten Ph.D. students will be able to take advantage of MatSEC’s course offerings while working towards their degree.

The MatSEC graduate school’s focus is on the study of kesterites, a new class of materials used in photovoltaics. Kesterites are considered highly promising absorption film candidates for thin-film photovoltaics and could potentially double as photoelectrodes for splitting water using solar energy. The ultimate goal is to arrive at a comprehensive understanding of the relationship between this connecting semiconductor’s internal structure and its properties. This knowledge could aid researchers in developing customized materials for use in more cost-effective and efficient solar cells.

Prof. Dr. Susan Schorr, head of the Department for Crystallography at the HZB and a professor at FU Berlin, is the new graduate school’s spokesperson.  Research groups at FU Berlin, the Technical University of Berlin, the Humboldt University of Berlin, and the Brandenburg University of Technology in Cottbus are all partners of the new graduate school. “It is precisely in this interdisciplinary research structure that MatSEC’s strengths lie,” says Schorr.

Doctoral students attend lectures that are relevant to their research at the different participating university campuses. Workshops, study abroad programs, and course offerings at the Dahlem Research School complement the program. “We’re thrilled that we’re able to offer seven additional spots for students as part of our graduate program,” says Gabriele Lampert, Ph.D. coordinator at the HZB.

HS

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.