New cavities successfully installed

The new cavities during their installation.

The new cavities during their installation. © C. Jung /HZB

A glimps at the water circuits.

A glimps at the water circuits. © C. Jung / HZB

At the heart of BESSY II are four cavities, hollow resonators, providing the energy that electrons in the storage ring re-absorb after they have released it as light packets. The old cavities were still from the 1970s and were employed at DESY in Hamburg, then at BESSY I, and finally at BESSY II beginning in 1998. “However, the limit of their operating life has been reached”, says Dr. Wolfgang Anders from the HZB Institute of SRF – Science and Technology. Anders, an expert in the field, was responsible for replacing two of the four old cavities with new units during the summer shutdown.

The new cavities have been developed as an EU Project under the supervision of HZB. They are constructed of copper, as before, but have a somewhat more complex shape that is optimised to effectively avoid exciting undesirable oscillations, known as “higher-order modes”. These higher modes are excited by high beam energies and can lead to instabilities. 

“The new cavities are significantly more robust and can store up to 80 kilowatts – twice as much as the old cavities. As a result, the requirements for cooling have increased as well”, explains Anders, pointing out the multitude of coolant pipes around the new cavities.

The beam energy at BESSY II is presently still restricted because the vacuum in the new cavities is still improving slowly. “We will be normalising the vacuum conditions over Christmas so that we can operate BESSY II at full beam energy afterwards”, says Anders. 

Both of the other old cavities will be replaced during the 2015 summer shutdown so that all the advantages of the new cavities can come into play.

arö

  • Copy link

You might also be interested in

  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.