Das aktive Zentrum der Thiolase blockieren

Ein Hauptmerkmal des aktiven Zentrums der trypanosomalen Thiolase ist der HDCF-Loop (HIS-ASP-CYS-PHE), dargestellt in hellem Blau.

Ein Hauptmerkmal des aktiven Zentrums der trypanosomalen Thiolase ist der HDCF-Loop (HIS-ASP-CYS-PHE), dargestellt in hellem Blau. © University of Oulu

Wissenschaftler der finnischen Universität Oulu und des HZB schaffen Grundlage für Erforschung neuer Medikamente gegen Schlafkrankheit

Wissenschaftler der finnischen Universität Oulu und des Helmholtz-Zentrum Berlin (HZB) haben neue Wege zur Medikamentenentwicklung gegen die afrikanische Schlafkrankheit und andere von Parasiten übertragene, tropische Erkrankungen aufgezeigt. Grundlage dafür sind Strukturuntersuchungen an einem als Thiolase bezeichneten Enzym. Thiolase spielt eine wichtige Rolle im Lipid-Stoffwechsel krankheitsübertragender Parasiten. Die Struktur des Biomoleküls haben die Forscher an der MX-Beamline des Elektronenspeicherrings BESSY II des HZB untersucht. (Biochemical J. 2013, DOI: 10.1042/BJ20130669)

Die afrikanische Schlafkrankheit Trypanosomiasis oder die indische Leishmaniose sind tropische Krankheiten, die von Parasiten ausgelöst werden. An ihnen erkranken Jahr für Jahr erkranken Millionen von Menschen, tausende sterben daran. Medikamente gegen die Parasiten sind teuer und haben häufig starke Nebenwirkungen. Zudem sind seit Jahrzehnten keine neuen, wirksamen Therapeutika entwickelt worden. Die Weltgesundheitsorganisation WHO misst Forschungen zur Entwicklung entsprechender Wirkstoffe deshalb besondere Bedeutung zu.

Wissenschaftler um Prof. Rik Wierenga von der Universität Oulu haben dafür die Grundlage geschaffen und die Struktur des Enzyms Thiolase aufgeklärt. Thiolase ist für den Lipid-Stoffwechsel der Parasiten unverzichtbar. „Entscheidend ist der Aufbau des aktiven Zentrums des Enzyms“, sagt Wierenga: „Hier docken die für den parasitären Stoffwechsel wichtigen Lipide an. Und hier finden die chemischen Reaktionen statt, mit denen die Lipide umgebaut werden.“ Die Struktur und die Funktion des aktiven Zentrums gelte es zu erforschen, so Wierenga: „Dann kann man Substanzen entwickeln, die die Lipide imitieren, fest an das aktive Zentrum des Enzyms andocken und es damit blockieren.“ Die entsprechenden Moleküle sind hervorragende Ausgangspunkte für die Entwicklung neuer Pharmazeutika.

Die Untersuchungen der Thiolase am BESSY haben ein sehr detailliertes Bild vom aktiven Zentrum der Thiolase ergeben: „Zudem haben wir jetzt eine viel bessere Vorstellung von der Funktion der Thiolase“, sagt Wierenga: „Es sieht so aus, als ob sie den ersten Schritt im Stoffwechselweg der Sterol-Biosynthese katalysiert. Er hat bei mehreren Parasiten große Bedeutung.“

„Die Vermessung kristalliner Thiolase-Proteine an unserer MX-Beamline hat die Geometrie des aktiven Zentrums im Enzym aufgedeckt“, sagt Dr. Manfred Weiss vom HZB. Dabei hat eine spezifische Windung im Proteinmolekül eine besondere Bedeutung, der so genannte HDCF-Loop. Die Struktur, die sehr tief im Inneren der Thiolase liegt, war bisher unbekannt. „Die Kenntnis der HDCF-Struktur ist ein idealer Ausgangspunkt zur Entwicklung neuer Medikamente gegen die Parasiten“, fasst Rik Wierenga zusammen

Originalpublikation:
Harijan, R.K., Kiema, T.R., Karjalainen, M.P., Janardan, N., Murthy, M.R., Weiss. M.S., Michels, P.A., Wierenga, R.K. (2013) Crystal structures of SCP2-thiolases of Trypanosomatidae, human pathogens causing widespread tropical diseases: the importance for catalysis of the cysteine of the unique HDCF loop. Biochem J., 455, 119-130.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.