HZB an neuem SFB zu Metalloxid-Wasser-Systemen beteiligt
Dr. Bernd Winter in der Experimentierhalle von BESSY II. Foto: Stephan Thürmer
Ein Forschungsteam vom HZB ist am neuen Sonderforschungsbereich „Molekulare Einblicke in Metalloxid/Wasser-Systeme“ beteiligt, der von der Deutschen Forschungsgemeinschaft ab sofort gefördert wird. Dr. Bernd Winter von der Nachwuchsgruppe um Prof. Dr. Emad Aziz wird dabei Metallionen und Metall-Oxid-Komplexe in wässriger Lösung an BESSY II untersuchen.
Dazu verwenden die Forscher einen flüssigen Mikrojet im Vakuum, der es erlaubt, wässrige Lösungen mittels Photoelektronen-Spektroskopie an BESSY II zu vermessen. Diese Messungen ermöglichen Rückschlüsse auf die Bindungsenergien und auf elektronische Relaxationsprozesse und geben damit Aufschluss über die Wechselwirkung der Metall-Oxid-Komplexe mit den umgebenden Wassermolekülen. Außerdem lassen sich damit auch Vorläufermoleküle bestimmen, die der Bildung größerer Metall-Oxo-Netzwerke vorausgehen.
Die Erkenntnisse sind wichtig, um Metalloxide gezielt für konkrete Anwendungen synthetisieren zu können, was typischerweise in wässriger Lösung erfolgt. Denn Metalloxide sind technisch extrem interessant, sie werten Baumaterialien und Spezialgläser auf, verbessern die Eigenschaften keramischer Implantate in der Medizin und sie gelten als interessante Kandidaten für Anwendungen in Brennstoffzellen, in Solarzellen und in der Mikroelektronik sowie als neuartige Katalysatoren.
Sprecher des SFB „Molekulare Einblicke in Metalloxid/Wasser-Systeme: Strukturelle Evolution, Grenzflächen und Auflösung“ ist Prof. Dr. Christian Limberg, Humboldt-Universität zu Berlin; Weitere Partner sind: Freie Universität Berlin, Technische Universität Berlin, Universität Potsdam, Bundesanstalt für Materialforschung und -prüfung Berlin, Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin. Gemeinsam wollen die beteiligten Forschungsteams elementare Prozesse rund um die Metalloxid-Wasser-Wechselwirkungen auf allen relevanten Längenskalen mit einer Kombination aus chemischer Synthese sowie hochmodernen experimentellen und theoretischen Methoden untersuchen. Die Deutsche Forschungsgemeinschaft hat Ende November 2013 neun neue Sonderforschungsbereiche (SFB) eingerichtet, die sie bis Mitte 2017 mit insgesamt 64,4 Millionen Euro fördert.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13861;sprache=de
- Link kopieren
-
Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?
Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.
-
Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
-
Elektrokatalyse mit doppeltem Nutzen – ein Überblick
Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.