HZB an neuem SFB zu Metalloxid-Wasser-Systemen beteiligt
Dr. Bernd Winter in der Experimentierhalle von BESSY II. Foto: Stephan Thürmer
Ein Forschungsteam vom HZB ist am neuen Sonderforschungsbereich „Molekulare Einblicke in Metalloxid/Wasser-Systeme“ beteiligt, der von der Deutschen Forschungsgemeinschaft ab sofort gefördert wird. Dr. Bernd Winter von der Nachwuchsgruppe um Prof. Dr. Emad Aziz wird dabei Metallionen und Metall-Oxid-Komplexe in wässriger Lösung an BESSY II untersuchen.
Dazu verwenden die Forscher einen flüssigen Mikrojet im Vakuum, der es erlaubt, wässrige Lösungen mittels Photoelektronen-Spektroskopie an BESSY II zu vermessen. Diese Messungen ermöglichen Rückschlüsse auf die Bindungsenergien und auf elektronische Relaxationsprozesse und geben damit Aufschluss über die Wechselwirkung der Metall-Oxid-Komplexe mit den umgebenden Wassermolekülen. Außerdem lassen sich damit auch Vorläufermoleküle bestimmen, die der Bildung größerer Metall-Oxo-Netzwerke vorausgehen.
Die Erkenntnisse sind wichtig, um Metalloxide gezielt für konkrete Anwendungen synthetisieren zu können, was typischerweise in wässriger Lösung erfolgt. Denn Metalloxide sind technisch extrem interessant, sie werten Baumaterialien und Spezialgläser auf, verbessern die Eigenschaften keramischer Implantate in der Medizin und sie gelten als interessante Kandidaten für Anwendungen in Brennstoffzellen, in Solarzellen und in der Mikroelektronik sowie als neuartige Katalysatoren.
Sprecher des SFB „Molekulare Einblicke in Metalloxid/Wasser-Systeme: Strukturelle Evolution, Grenzflächen und Auflösung“ ist Prof. Dr. Christian Limberg, Humboldt-Universität zu Berlin; Weitere Partner sind: Freie Universität Berlin, Technische Universität Berlin, Universität Potsdam, Bundesanstalt für Materialforschung und -prüfung Berlin, Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin. Gemeinsam wollen die beteiligten Forschungsteams elementare Prozesse rund um die Metalloxid-Wasser-Wechselwirkungen auf allen relevanten Längenskalen mit einer Kombination aus chemischer Synthese sowie hochmodernen experimentellen und theoretischen Methoden untersuchen. Die Deutsche Forschungsgemeinschaft hat Ende November 2013 neun neue Sonderforschungsbereiche (SFB) eingerichtet, die sie bis Mitte 2017 mit insgesamt 64,4 Millionen Euro fördert.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13861;sprache=de
- Link kopieren
-
Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
-
Elektrokatalyse mit doppeltem Nutzen – ein Überblick
Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.