HZB part of new metal oxide/water systems CRC

A team of HZB researchers is part of the new collaborative research center, "Molecular insights into metal oxide/water systems" funded by the German Research Association. As part of this CRC, Dr. Bernd Winter of Prof. Dr. Emad Aziz's junior research group will be studying metal ions and metal oxide complexes in aqueous solution at BESSY II.

Spokesman of the CRC is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of the Max Planck Society Berlin.

The researchers are using a liquid microjet under vacuum conditions allowing them to obtain measurements of aqueous solutions using photoelectron spectroscopy at BESSY II. Their measurements allow for conclusions to be drawn on the binding energies and on electronic relaxation processes and thus provide clues as to the interaction between metal oxide complexes and the surrounding water molecules. In addition, the technique can be used to determine precursor molecules that will go on to form larger metal-oxo networks.

These insights are key to our ability to synthesize metal oxides for specific applications, which is typically done in aqueous solution. The reason being that metal oxides are highly interesting in terms of their technological applicability: they upgrade building materials and special types of glass, improve the properties of ceramic implants in medicine, and are considered interesting candidates for use in fuel cells, solar cells, microelectronics, and as novel kinds of catalysts.

Spokesman of the CRC "Molecular insights into metal oxide/water systems: Structural evolution, interface, and resolution" is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of  the Max Planck Society Berlin. Together, the participating research groups are hoping to investigate different fundamental processes relating to metal oxide interactions with water on all relevant length scales using a combination of chemical synthesis and cutting-edge experimental and theoretical methods. In late November 2013, the German Research Association established nine new collaborative research centers (CRC's), which, through mid-2017, will receive federal funding in the amount of 64.4 million Euros total.

arö

  • Copy link

You might also be interested in

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.