HZB part of new metal oxide/water systems CRC

A team of HZB researchers is part of the new collaborative research center, "Molecular insights into metal oxide/water systems" funded by the German Research Association. As part of this CRC, Dr. Bernd Winter of Prof. Dr. Emad Aziz's junior research group will be studying metal ions and metal oxide complexes in aqueous solution at BESSY II.

Spokesman of the CRC is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of the Max Planck Society Berlin.

The researchers are using a liquid microjet under vacuum conditions allowing them to obtain measurements of aqueous solutions using photoelectron spectroscopy at BESSY II. Their measurements allow for conclusions to be drawn on the binding energies and on electronic relaxation processes and thus provide clues as to the interaction between metal oxide complexes and the surrounding water molecules. In addition, the technique can be used to determine precursor molecules that will go on to form larger metal-oxo networks.

These insights are key to our ability to synthesize metal oxides for specific applications, which is typically done in aqueous solution. The reason being that metal oxides are highly interesting in terms of their technological applicability: they upgrade building materials and special types of glass, improve the properties of ceramic implants in medicine, and are considered interesting candidates for use in fuel cells, solar cells, microelectronics, and as novel kinds of catalysts.

Spokesman of the CRC "Molecular insights into metal oxide/water systems: Structural evolution, interface, and resolution" is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of  the Max Planck Society Berlin. Together, the participating research groups are hoping to investigate different fundamental processes relating to metal oxide interactions with water on all relevant length scales using a combination of chemical synthesis and cutting-edge experimental and theoretical methods. In late November 2013, the German Research Association established nine new collaborative research centers (CRC's), which, through mid-2017, will receive federal funding in the amount of 64.4 million Euros total.

arö

You might also be interested in

  • 40 years of research with synchrotron light in Berlin
    News
    14.09.2022
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.
  • BESSY II resumes operation after a long shutdown
    News
    25.08.2022
    BESSY II resumes operation after a long shutdown
    On 30 August, BESSY II ligth source will resume user operation: the research centre will then welcome guest researchers from all over the world and support them in their various experiments. The 14-week  shutdown was the longest in BESSY II history. Among other works, the main supply was completely renewed. The successful completion of the work was celebrated with all those involved.