Energy efficient LEDs and lasers with Chalcogenide monolayers

<sub>2</sub> (orange) on top of MoS<sub>2</sub> (blue). The SPEEM-microscopy reveals coupling between both layers and charge transfer.

2 (orange) on top of MoS2 (blue). The SPEEM-microscopy reveals coupling between both layers and charge transfer. © F. Kronast/HZB

As reported by nanotechweb.org, monolayers of certain chalcogenides might be used to make energy-efficient nano-optoelectronics devices, such as LEDs, lasers, solar cells, and high-electron-mobility transistors. Scientists of the University of California at Berkeley, the Lawrence Berkeley National Lab and the Helmholtz-Zentrum Berlin für Materialien und Energie in Berlin investigated the electronic and optoelectronic properties of a so called heterojunction of WSe2/MoS2.

“At BESSY II we performed local x-ray photoemission spectroscopy at the SPEEM microscope and could observe interlayer coupling and charge transfer in this new type of heterojunction”, Dr. Florian Kronast, HZB, explains. This makes these types of heterojunctions interesting candidates for new devices.

To the article in nanotechweb

The present work is detailed in PNAS doi: 10.1073/pnas.1405435111.

arö

You might also be interested in

  • HZB receives funding to make innovations usable more quickly
    News
    23.03.2023
    HZB receives funding to make innovations usable more quickly
    The Helmholtz Association has selected three new innovation platforms that will now be funded. HZB is involved in two of them: The Innovation Platform on Accelerator Technologies HI-ACTS is intended to open up modern accelerators for a wide range of applications, while the Innovation Platform Solar TAP is intended to bring new ideas from the laboratories of photovoltaics research more quickly into an application. In total, HZB will receive 4.2 million euros in grants from the Pact for Research and Innovation over the next three years.


  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.