1200 Beschleunigerphysiker aus aller Welt treffen sich in Dresden

Auf der "IPAC-Student Poster Session" präsentierten die HZB-Doktoranden Jens Völker und Christoph Kunert ihre Arbeit. Sie erhielten einen "Student Grant".

Auf der "IPAC-Student Poster Session" präsentierten die HZB-Doktoranden Jens Völker und Christoph Kunert ihre Arbeit. Sie erhielten einen "Student Grant".

Im HZB-Testlabor HoBiCaT wird an supraleitende Kavitäten geforscht. Sie sind wichtige Komponenten für die Lichtquellen der Zukunft.

Im HZB-Testlabor HoBiCaT wird an supraleitende Kavitäten geforscht. Sie sind wichtige Komponenten für die Lichtquellen der Zukunft.

Zum ersten Mal findet die weltgrößte Beschleunigerkonferenz in Deutschland statt, zu der vom 15. bis 20. Juni etwa 1200 Wissenschaftlerinnen und Wissenschaftler in der sächsischen Landeshauptstadt Dresden erwartet werden. Auf der 5. Internationalen Konferenz IPAC tauschen sich die Experten über Fortschritte aus, die sie bei der Weiterentwicklung von Beschleunigern und deren Komponenten erzielt haben.

Experimente mit beschleunigten Teilchen haben viele wertvolle Erkenntnisse für Wissenschaft und Gesellschaft hervorgebracht. Sie sind in der modernen Forschung nicht mehr wegzudenken. Um diese begehrten Teilchen zu erzeugen, braucht es zuverlässig funktionierende Beschleuniger. Die Anforderungen an diese großen Maschinen wachsen stetig, denn Forscher wollen beispielsweise mit noch intensiveren Strahlen oder kürzeren Lichtpulsen den Aufbau und die Dynamik von Materialien besser verstehen. Doch die Materialforschung ist nur ein Aspekt – der Einsatz von Beschleunigern ist groß und entsprechend unterschiedliche Themen stehen auf der IPAC-Agenda: von Beschleunigerprojekten der Zukunft über alternative Konzepte bis hin zum Einsatz in der Krebstherapie. Die Organisation vor Ort liegt beim Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Das Helmholtz-Zentrum Berlin mit seiner Kompetenz in der Beschleunigerphysik unterstützt bei der lokalen Organisation der Konferenz.

Das Helmholtz-Zentrum Berlin wird das Zusammentreffen der Beschleunigerphysiker dazu nutzen, das Konzept BESSY-VSR, die wichtigste Weiterentwicklung des Elektronenspeicherrings BESSY II, einer großen Fachgemeinschaft zu präsentieren. Auf mehreren Postern fassen die HZB- Wissenschaftlerinnen und Wissenschaftler auch die Fortschritte bei der Entwicklung eines Prototyps für einen Linearbeschleuniger mit Energierückgewinnung, kurz ERL (BERLinPro), und der Undulatorenentwicklung zusammen. Im Anschluss an die Konferenz werden 50 interessierte Teilnehmer den Elektronenspeicherring BESSY II, die Metrology Light Source (MLS) und das Testlabor für supraleitende Kavitäten (HoBiCaT) besichtigen und sich über die experimentellen Möglichkeiten am HZB informieren.

Die Internationale Konferenz will insbesondere junge Nachwuchstalente in der Beschleunigerphysik fördern und ihnen ermöglichen, an dieser wichtigen Austauschplattform zu partizipieren. Insgesamt 90 Studenten aus aller Welt erhielten „IPAC-Grants“. Sie bekommen damit die Konferenzgebühren erstattet und dürfen an einer Nachwuchs-Posterausstellung teilnehmen. Vom Helmholtz-Zentrum Berlin wurden Christoph Kunert (Protonentherapie) und Jens Völker (Institut Beschleunigerphysik) mit einem Grant ausgezeichnet. Im lokalen Organisationskomitee der Konferenz unterstützt Stefanie Kodalle (Kommunikation) als Presentation Manager den reibungslosen Ablauf der Tagung.

Während der Beschleunigerkonferenz gab es auch einen Abendvortrag für die interessierte Öffentlichkeit. Der Dresdner Professor Wolfgang Enghardt informierte über die neue Krebstherapie mit Teilchenstrahlen und Beschleuniger in der Medizin.

(sz/mit HZDR)

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.