Elektrostatik reicht schon:

Eine ultrad&uuml;nne dielektrische Schicht kann den &Uuml;bergang der Ladungstr&auml;ger (hier rote &bdquo;L&ouml;cher&ldquo;) vom organischen Halbleiter in das Metall erleichtern. Sie schafft eine kontinuierliche Verbindung zwischen den Energieniveaus im organischen Material (blau) und im Metall (schwarz, Fermi-level). Dadurch gelingt ein guter elektrischer Kontakt. <br /><br />

Eine ultradünne dielektrische Schicht kann den Übergang der Ladungsträger (hier rote „Löcher“) vom organischen Halbleiter in das Metall erleichtern. Sie schafft eine kontinuierliche Verbindung zwischen den Energieniveaus im organischen Material (blau) und im Metall (schwarz, Fermi-level). Dadurch gelingt ein guter elektrischer Kontakt.

© M. Oehzelt/HZB

Einfaches Modell beschreibt, was zwischen organischen Halbleitern und Metallen geschieht

Organische Halbleiter ermöglichen flexible, biegsame Bildschirme (OLEDs), Solarzellen (OPVCs) und andere interessante Anwendungen. Ein Problem dabei ist aber die Grenzfläche zwischen den metallischen Kontakten und dem organischen Halbleitermaterial, an der unerwünschte Verluste auftreten. Nun hat Dr. Martin Oehzelt gezeigt, worauf es ankommt, wenn diese Verluste zwischen Metall und organischem Halbleiter minimiert werden sollen. Insbesondere erklärt sein Modell auch, warum eine dünne, elektrisch isolierende Schicht zwischen den beiden Materialien den Übergang von Ladungsträgern sogar erleichtern kann. Seine Ergebnisse sind nun in Nature Communications veröffentlicht.

Aktuell gibt es viele unterschiedliche Ansätze, um diesen Übergang zwischen organischen Halbleitermaterialien und den metallischen Kontakten zu beschreiben. Diese teilweise widersprüchlichen Theorien, von denen aber keine in vollem Umfang für alle Fälle gültig ist, hat Oehzelt nun vereinheitlicht und ein universelles Modell entwickelt, das vor allem auf dem elektrostatischen Potential basiert, das von den Ladungsträgern im Metall und im organischen Halbleiter hervorgerufen wird. „Ich habe die Auswirkungen der Ladungsträgerverteilung auf die elektronischen Zustände an der Grenzfläche berechnet und wie diese Veränderung auf die Ladungsträgerverteilung zurückwirkt“, erklärt er. Oehzelt forscht zurzeit als Postdoktorand mit Dr. Georg Heimel bei Prof. Dr. Norbert Koch, die an der Humboldt-Universität zu Berlin und am Helmholtz-Zentrum Berlin arbeiten.

Solche Berechnungen hatte bislang vor Martin Oehzelt noch niemand so konsequent durchgeführt. Dabei stellte Oehzelt fest: „Für mich war überraschend, dass hier die quantenphysikalische Ebene gar nicht so stark in Erscheinung tritt. Die elektrostatischen Effekte überwiegen! Das sehen wir auch daran, wie gut das Modell zu Messergebnissen passt.“ Am Beispiel von Pentazen, einem gebräuchlichen organischen Halbleiter, hat Oehzelt die Vorhersagen des Modells zu den Grenzflächenverlusten quantitativ überprüft.

Dabei entscheidet die Energieverteilung der elektronischen Zustände im organischen Halbleiter darüber, welche Mindestbarriere die Ladungsträger beim Übergang vom oder in das Metall überwinden müssen. Die Berechnung zeigt, dass auch die Form dieser Energiebarrieren dabei variieren kann, von einer Stufe bis hin zu langsam und kontinuierlich ansteigenden Kurven, die zu wesentlich weniger Verlusten führen. Dies kann dadurch erreicht werden, dass man zwischen dem organischen Halbleiter und dem Metall eine hauchdünne isolierende Schicht einfügt. Entgegen der allgemeinen Erwartung wird also durch Einfügen eines Isolators der elektrische Kontakt verbessert.

Die Ergebnisse dieser Arbeit könnten es deutlich erleichtern, Grenzflächen und Kontakte zu optimieren und damit effizientere organische Halbleiterbauelemente zu entwickeln.


Die Arbeit ist nun in Nature Communications veröffentlicht.
doi 10.1038/ncomms5174

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.