Electrostatics do the trick

When inserting an ultrathin dielectric between metal electrode and organic semiconductor, charge carriers (shown here for a positively charged holes in red) are, counter intuitively, more efficiently extracted from their transport level (blue) in the organic to the Fermi level (black) in the metal than without the interlayer.

When inserting an ultrathin dielectric between metal electrode and organic semiconductor, charge carriers (shown here for a positively charged holes in red) are, counter intuitively, more efficiently extracted from their transport level (blue) in the organic to the Fermi level (black) in the metal than without the interlayer. © M. Oehzelt/HZB

A simple model describes what happens between organic semiconductors and metals

Organic semiconductors allow for flexible displays (OLEDs), solar cells (OPVCs), and other interesting applications. One common problem in these devices, however, is the interface between the metallic contacts and the organic semiconductor material, where undesirable losses occur. Now Dr. Martin Oehzelt has shown what these losses between the metal and the organic semiconductors depend upon and how to minimize them. In particular, his model also explains why a thin, electrically insulating layer between the two materials can even facilitate the transition of charge carriers. His results have recently been published in Nature Communications.

Currently, there are many different approaches describing the interface between organic semiconductor materials and metallic contacts. These somewhat contradictory theories, none of which is universally valid for all cases, have now been unified by Oehzelt and developed into a single coherent model based on the electrostatic potential caused by the charge carriers in the metal and the organic semiconductor. “I calculated the impact of the charge carrier distribution on the electronic states at the interface and how these changes feed back onto the charge carrier distribution”, he explains. Oehzelt is presently conducting research with Dr. Georg Heimel as a postdoc for Prof. Norbert Koch, who works at the Humboldt-Universität zu Berlin and the Helmholtz-Zentrum Berlin.

Such calculations have never been so comprehensively carried out before. Performing them, Oehzelt states: “it was surprising to me that the quantum physical level was not that important. The electrostatic effects predominated! The agreement between our model and the experimental data were astonishing.” On the example of pentacene, a common organic semiconductor, Oehzelt has quantitatively checked the model’s predictions for interface losses.

The energy distribution of the electronic states in organic semiconductors determines the minimum energy barrier the charge carriers have to overcome in transitioning from or into the metal. The calculation demonstrates that the shape of this energy barrier can vary, from a step-function to slow, continuously rising curves that lead to considerably lower losses. The latter can be achieved by introducing an extremely thin insulating layer between the organic semiconductor and the metal. Contrary to the general expectation, the introduction of an insulator thus improves the electrical contact.

The results of this work could notably simplify optimization of interfaces and contacts and, thereby, the development of more efficient organic electronic devices.

The work has recently been published in  Nature Communications:

doi 10.1038/ncomms5174
 
 

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.