Neutron Tomography technique reveals phase fractions of crystalline materials in 3-Dimensions

Reconstructed energy-selective neutron tomography: Visualization of austenite and martensite distribution in torsion (two images to left) and tensile (image to the right) loading.<br />

Reconstructed energy-selective neutron tomography: Visualization of austenite and martensite distribution in torsion (two images to left) and tensile (image to the right) loading.
© HZB/Wiley VCH

The work that was carried out at CONRAD is featuredon on the cover of &ldquo;Advanced Materials&rdquo;.<br />

The work that was carried out at CONRAD is featuredon on the cover of “Advanced Materials”.
© Wiley VCH

Researchers at Helmholtz-Zentrum Berlin (HZB) and The University of Tennessee Knoxville (UTK) developed a novel method, based on energy-selective neutron imaging for visualization of crystalline phase distributions within the bulk of metallic samples.

The method overcomes limitations of existing techniques which are limited to the surface or small-sized specimens, and allows a 3-D representation of the phase fractions within the sample volume. The work has just been published in the journal “Advanced Materials”.

“For many engineering applications it is of major importance to characterize the bulk of materials spatially, instead of only probing selected locations. The new method provides exactly that capability, and the HZB-UTK team has demonstrated it by using samples made from stainless steel that undergo a phase transformation after being subjected to tensile and torsional deformation.”, said Prof. Dayakar Penumadu from UTK. He and UTK Ph.D. student Robin Woracek collaborated with the researchers Ingo Manke, Nikolay Kardjilov and André Hilger from the Imaging Group at the Institute of Applied Materials (F-IAM) at HZB on establishing new quantitative imaging methods by making use of diffraction contrast due to Bragg scattering in polycrystalline materials. Since the measurement method uses neutrons of selected wavelengths, the current work will also pave the way to implement such methods at Spallation Neutron Sources. The investigations were performed at the recently upgraded neutron imaging beamline CONRAD at BERII, which provides optimal instrumentation conditions for such measurements.

The present results provide phase fractions of Austenite and Martensite within the volume of the circular samples. They had a diameter of 8 mm, and CONRAD allowed measuring five samples simultaneously. The tensile samples show highest degree of phase transformation in the necking region as expected, while for the torsion samples the phase transformation increases from the center towards the surface in the radial direction. The quantitative results were confirmed and show excellent agreement for selected locations, using the Residual Stress Analysis and Texture Diffractometer (E3) at the Department Microstructure and Residual Stress Analysis (F-AME) at HZB (collaborator M. Boin).

The investigated stainless steels are widely used, e.g., as automotive and aerospace structural alloys, for major appliances, household items and buildings. The new characterization method can be used to improve both material properties and manufacturing processes. However, the same method is naturally applicable to a wide range of natural and advanced materials, and it has the invaluable advantage of being able to reveal inhomogeneities within the measured volume, which may remain undetected using common techniques.

This research work has just been published in the journal “Advanced Materials”, which has an impact factor of 15,4 and is one of the highest cited materials science journals. The article is available at: http://onlinelibrary.wiley.com/doi/10.1002/adma.201400192/abstract and is featured on the cover. This new characterization technique is expected to have a major immediate impact in developing super-elastic and shape memory alloys, which are of tremendous importance in the medical field also.

Original publication: Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Boin, M., Banhart, J. and Manke, I. (2014), “3D Mapping of Crystallographic Phase Distribution using Energy-Selective Neutron Tomography”. Adv. Mater., 26: 4069–4073. doi: 10.1002/adma.201400192 (2014)

arö

  • Copy link

You might also be interested in

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.