„Multispektral - Brille“ für das Rasterelektronenmikroskop

Bild des neuen WDS-Instruments, das mit Standard-Gehäuse und Standard-Flansch an ein Rasterelektronenmikroskop (Zeiss-EVO 40) angeschlossen ist.

Bild des neuen WDS-Instruments, das mit Standard-Gehäuse und Standard-Flansch an ein Rasterelektronenmikroskop (Zeiss-EVO 40) angeschlossen ist.

Messergebnisse der Spektren von Beryllium (oben, K-Schale) und Gallium (unten, L-Schale).

Messergebnisse der Spektren von Beryllium (oben, K-Schale) und Gallium (unten, L-Schale).

Reflektionszonenplatten aus dem HZB ermöglichen den präzisen Nachweis von leichten Elementen in Materialproben unter dem Rasterelektronenmikroskop, indem sie hohe Auflösung im Energiebereich von 50 – 1120 eV bieten.

Die Rasterelektronenmikroskopie wird nicht nur genutzt, um Probenoberflächen genau zu vermessen, sondern auch um ihre chemische Zusammensetzung zu bestimmen. Dafür regt der Elektronenstrahl beim Abtasten der Probe die Atome zu Fluoreszenz an. Diese Strahlung gibt Auskunft über Ort und Art des Elements, sofern sie präzise analysiert werden kann. Doch gerade die leichten Elemente des Periodensystems geben Strahlung in einem Energiebereich ab, der mit energiedispersiven Spektrometern (EDS) nicht hinreichend gut aufgelöst werden kann. Lithium, Beryllium, Bor, Kohlenstoff und Stickstoff spielen in Energiematerialien aber auch funktionalen Materialien eine wichtige Rolle.

Eine Lösung kommt nun aus dem HZB: Dort hatte Prof. Dr. Alexei Erko, der das Institut für Nanometeroptik und Technologie leitet, bereits vor einiger Zeit neuartige Optiken aus sogenannten Reflektionszonenplatten entwickelt und patentieren lassen. Sie bestehen aus tausenden von konzentrischen oder elliptischen Strukturen und  werden inzwischen an Synchrotronquellen wie BESSY II bei der Analyse der Röntgenstrahlung im niedrigen Energiebereich eingesetzt. Strahlung wird durch diese Optiken nicht gebrochen wie etwa an einer Glaslinse, sondern gebeugt, so dass Interferenzen entstehen.

„Unsere Kollegen vom IfG-Institute for Scientific Instruments GmbH hatten mich gefragt, ob sich eine Reflektionszonenplatten-Optik nicht auch an einem Elektronenmikroskop nutzen ließe, um dort die Auflösung im niedrigen Energiebereich zu steigern. Auf dieser Grundlage wurden im Institut für angewandte Photonik e. V. ein FuE-Projekt und in der IfG GmbH ein Anschlussprojekt durchgeführt; als Ergebnis konnte nun ein Funktionsmuster eines speziellen wellenlängendispersiven Spektrometers (WDS) realisiert werden, mit dessen Hilfe am Elektronenmikroskop auch die leichten Elemente sehr präzise nachweisbar sind, zum Beispiel Lithium, Bor und Beryllium aber auch Kohlenstoff und Sauerstoff“, erklärt Erko.

Das Spektrometer besteht aus einer Anordnung von 17 Reflektionszonenplatten und deckt den Energiebereich von 50 eV bis 1120 eV ab. Um eine noch höhere Auflösung zu erreichen, stellten die Wissenschaftler eine Optik aus 200 Reflektionszonenplatten her, die im Energiebereich von 100-1000 eV quasi-kontinuierliche Spektralmessungen liefert.
 
„Hohe Auflösungen in diesem Energiebereich sind wichtig, um die leichteren Elemente des Periodensystems nachweisen zu können. Das ist insbesondere für die Forschung an Energiematerialien wie Solarzellen, Batterien, Solaren Brennstoffen und Katalysatoren interessant. Es könnte aber auch für die Forschung an magnetischen Materialien und in den Lebenswissenschaften nützlich sein. Wir sind gespannt, für welche Fragestellungen dieses neue Werkzeug nun verwendet wird“, sagt Erko.

Referenz: 14 July 2014 | Vol. 22, No. 14 | DOI:10.1364/OE.22.016897 | OPTICS EXPRESS 16897

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Promotionspreis für Hanna Trzesniowski
    Nachricht
    09.07.2025
    Helmholtz-Promotionspreis für Hanna Trzesniowski
    Hanna Trzesniowski hat während ihrer Promotion am Helmholtz-Zentrum Berlin (HZB) an nickelbasierten Elektrokatalysatoren für die Wasserspaltung geforscht. Ihre Arbeit trägt dazu bei, das Verständnis der alkalischen Wasserelektrolyse zu vertiefen und den Weg für die Entwicklung effizienterer und stabilerer Katalysatoren zu ebnen. Dafür erhielt sie am 8. Juli 2025 den Helmholtz-Promotionspreis, der die besten und originellsten Doktorarbeiten der Helmholtz-Gemeinschaft würdigt.
  • Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Nachricht
    07.07.2025
    Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Dr. Andrea Thorn baut seit 1. Juli 2025 am HZB die neue Abteilung „KI und Biomolekulare Strukturen“ auf. Die Biophysikerin bringt langjährige Expertise in KI-basierten Tools für die Strukturbiologie mit und freut sich auf die enge Zusammenarbeit mit dem Team für Makromolekulare Kristallographie an den MX-Beamlines von BESSY II.
  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.