Dr. Annika Bande: Freigeist-Fellow am HZB

Freigeist-Fellow am HZB: Dr. Annika Bande<br />Foto: Mirko Krenzel f&uuml;r VolkswagenStiftung<br /><span></span>

Freigeist-Fellow am HZB: Dr. Annika Bande
Foto: Mirko Krenzel für VolkswagenStiftung

Seit Anfang Oktober beherbergt das HZB einen „Freigeist-Fellow“ der VolkswagenStiftung: Dr. Annika Bande hat jetzt ihre Forschung am Institut „Methoden der Materialentwicklung“ von Prof. Dr. Emad Aziz aufgenommen. Dort wird sie mit zunächst drei Doktoranden ihre eigene Nachwuchsgruppe aufbauen.

Die theoretische Chemikerin beschäftigt sich mit ultraschnellen Energietransfer-Prozessen. Im Mittelpunkt ihrer Forschung steht der so genannte interatomare Coulombzerfall (ICD): Beim ICD wird in einem Atom zunächst ein elektronisch angeregter Zustand erzeugt. Bei der Rückkehr in den Grundzustand gibt das Atom überschüssige Energie durch elektronische Coulomb-Wechselwirkung an ein Nachbaratom oder -molekül ab. Dabei treten die Elektronen auch über lange Entfernungen miteinander in Wechselwirkung.

Diese ultraschnellen Energietransfer-Prozesse sind bereits in einer Vielzahl von Variationen in atomaren und molekularen Systemen theoretisch und experimentell untersucht worden, unter anderem auch am HZB. Annika Bande hat in ihren theoretischen Arbeiten gezeigt, dass ICD auch in halbleitenden Nanokristallen – so genannten Quantenpunkten – stattfinden muss. Den experimentellen Nachweis wollen sie und ihre Mitarbeiter nun am Institut von Emad Aziz führen. In einem einzigartigen Ansatz beobachten die Wissenschaftler die Bewegung von Elektronen sowohl in theoretischen Berechnungen als auch mit verschiedenen spektroskopischen Methoden. Sie versprechen sich auch über das Freigeist-Projekt hinaus viele richtungsweisende Beiträge zur Untersuchung chemischer Prozesse und zur Materialforschung.

„Am HZB finde ich optimale Bedingungen, um die entsprechenden Versuche theoretisch zu begleiten“, sagt Dr. Bande. Die Aziz-Gruppe habe bereits Untersuchungen zum ICD an atomaren Systemen in wässriger Lösung durchgeführt. „Auf diese Erfahrung werde ich aufbauen können“, so Annika Bande weiter: „Zugleich erweitere ich das Spektrum der Gruppe auf, da ich mich vor allem auf Quantenpunkte konzentrieren werde.“ Davon verspricht sich die Wissenschaftlerin, die sich derzeit an der Universität Heidelberg habilitiert, Erkenntnisse unter anderem für die Entwicklung zukünftiger Solarzellen.

Das Freigeist-Fellowship der VolkswagenStiftung ist zunächst auf fünf Jahre angelegt und in dieser ersten Phase mit rund 790.000 Euro ausgestattet. Die Förderung wendet sich an „außergewöhnliche Forscherpersönlichkeiten nach der Promotion, die sich zwischen etablierten Forschungsfeldern bewegen und risikobehaftete Wissenschaft betreiben möchten“, so die Stiftung.

Hannes Schlender


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.