Keywords: energy (297) BESSY II (263)

News    05.11.2014

New in situ cell for investigating solid- and liquid-state samples and their interfaces under electrical voltage

Exploded view drawing of the electrochemical flow cell for soft x-ray absorption and emission spectroscopy. The membrane (yellow) is coated with a metal, serving as working electrode (WE) and that also serves as a support for the solid sample. Counter (CE) and reference electrode (RE) are placed in the liquid chamber. Tubes are attached to allow fast and easy liquid exchange and to prevent radiation damage.


Copyright: HZB

A team headed by Dr. Kathrin Aziz-Lange has developed a new in-situ cell for X-ray spectroscopy of fluid samples and their interfaces to solid bodies. What is special is the cell contains electrodes that can expose the sample to voltage during or between measurements. The resulting changes triggered in the electrical structure of the sample can be observed with the help of X-ray absorption and emission spectroscopy in real time.

Christoph Schwanke from the HZB Institute for Solar Fuels as well as Ronny Golnak and Dr. Jie Xiao from the HZB Institute for Methods of Material Development participated in the work.

“This new cell is interesting if you want to better understand the functioning of materials for catalytic processes, in electrolytic cells, or rechargeable batteries”, explains Kathrin Aziz-Lange. These kinds of materials play a large role in energy research, for instance in hydrogen generation through electrolytic splitting of water, in fuel cells, in dye-sensitised solar cells (DSSC) as well as in development of more efficient batteries.

The newly developed cell was presented in the scientific journal ,„Review of Scientific Instruments“ (5. November 2014, Vol. 85, 10).  first results have already been obtained, and it can also be used by visiting researchers.

 

"Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy," has been published online today, 5 November 2014, in Review of Scientific Instruments (Vol.85, Issue 10).

DOI: 10.1063/1.4899063

arö


           



You might also be interested in
  • <p>Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.</p>SCIENCE HIGHLIGHT      20.02.2019

    Water is more homogeneous than expected

    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours. [...]


  • <p>More than 250 invited guests celebrated the tenth anniversary of HZB on 18 February at the TIPI at the Chancellery.</p>NEWS      18.02.2019

    10 Years of Helmholtz-Zentrum Berlin: A strong partner in the scientific landscape

    Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) is celebrating its tenth anniversary on 18 February 2019 with around 250 invited guests from science, politics and industry. The Centre is one of the world's top institutions and makes a decisive contribution to Berlin as a location for cutting-edge research. This was emphasized by Michael Müller, Governing Mayor of Berlin, in reference to the anniversary. [...]


  • <p>The cones represents the magnetization of the nanoparticles. In the absence of electric field (strain-free state) the size and separation between particles leads to a random orientation of their magnetization, known as superparamagnetism</p>SCIENCE HIGHLIGHT      14.02.2019

    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain

    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state. [...]




Newsletter