Keywords: BESSY II (269) quantum materials (29)

Science Highlight    22.12.2014

Universality of charge order in cuprate superconductors

Crystal structures of HgBa2CuO4+ and YBa2Cu3O6+

The phase diagram demonstrates the complexity of the phases around the superconducting state SC in both cuprates.

Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials.

The discovery of superconductivity in cuprates, a class of ceramic materials, in 1986 has boosted an impressive effort of research all around the world. These materials still hold the record for the temperature where lossless conduction of electricity can be obtained. This is why they are called high-Tc superconductors, despite the fact that high-Tc means only minus 140 degrees centigrade. While this seems rather low, it is in fact very high compared to classical superconductors discovered at the beginning of the 20th century, where cooling close to the absolute temperature zero, minus 274 degrees, is required for the emergence of this exotic, yet very useful property. The exciting jump of the transition temperature with the discovery of the high-Tc superconductors still nurtures hope that lossless conduction of electricity may be possible close to room temperature some day.

Still not well understood: High Tc Superconductivity

The phenomenon of superconductivity is well understood – for the classical superconductors. When not being in the superconducting state, classical superconductors behave like metals, and superconductivity emerges from this metallic state by the pairing of electrons. Pairing of mobile charge carriers is also what is behind the superconductivity of the cuprates. However, these ceramic superconductors are materials, where even the non-superconducting state is hardly understood, let alone the mechanism behind the pairing of the charge carriers. This is why new insights into the properties of the cuprates still keep scientists excited – even almost 30 years after the discovery of high-Tc superconductivity.

When Copper and Oxygen atoms form planes

The cuprates come as a zoo of materials with abbreviations like LBCO, YBCO, LSCO, BSCO, and many more, with chemical formulae of  La2-xBaxCuO4, YBa2Cu3O6+, La2-xSrxCuO4, Bi2Sr2-xLaxCuO6+. All these materials have one common feature: Copper and oxygen atoms are arranged in planes, forming quasi two-dimensional objects. Introducing charge carriers into the copper oxygen planes does not result in a simple metallic behavior. Rather, a complexity of unusual phases around superconductivity is observed, and how the superconducting state develops from these exotic states of matter has escaped explanation up to now.

Charge order in cuprates

One of the phenomena observed in high-Tc cuprates is the so-called charge order. Here, the charge carriers that are introduced into the ceramics to make them conducting in the first place, tend to form a regular pattern of stripes in the copper oxygen planes. Being placed in a regular arrangement renders the charge carrier less mobile and impedes the formation of the superconducting state: Charge order is antagonistic to superconductivity. This is of course of highest importance for exploring the limits of superconductivity and understanding the phenomenon itself. Charge order was observed in one of the cuprate classes already in 1995. It took, however, quite some time to reveal that many other classes of cuprates exhibit the same behavior, and only in recent years evidence for an ubiquitous phenomenon was accumulated, with the important observation of charge order in YBCO in 2012. All these experiments provided evidence that this phenomenon is a common property of charge carriers in copper oxygen planes in the cuprates.

New results show universal pattern and interesting relations between effects

Initiated by researchers from Minnesota, an international team of scientists has now identified charge order in HgBa2CuO4 , emphasizing this universal behavior: HgBa2CuO4  is a pristine cuprate material with a rather simple crystal structure that superconducts at temperatures as high as minus 175 degrees centigrade. A further important result of the study is the finding that the charge order is closely related to another property of the material. When a very high magnetic field is applied, superconductivity is destroyed, and the electrical resistance goes up and down with changing magnetic field, which is known as quantum oscillations. Finding a universal connection between the period of these quantum oscillations and the spatial period of the charge order is one of the achievements of the study. Linking such seemingly distinct observations for a such a complex material is of utmost importance, as it helps to tell which effect is important and which is only spurious.

The tool: XUV-Diffractometer at UE46_PGM1-BEamline of BESSY II

An important part of this research was carried out with the XUV diffractometer at the HZB, employing the particularly sensitive method of resonant soft x-ray diffraction. This method has already been used successfully to detect the weak charge order in a number of materials in the past, in close cooperation with scientists from HZB who operate the instrument at the UE46_PGM1 beamline at BESSY II. The results are now published in Nature Communications. “After decades of research, the unusual states of matter in the cuprates and their relation to the phenomenon of high-Tc superconductivity are still puzzling the scientists”, says Dr. Eugen Weschke from the Department Quantum Phenomena in Novel Materials at HZB, “ the observation of charge order in this clean model system adds an important piece to the systematics of the cuprates, and we are happy having contributed to these studies by a number of experiments here at HZB by now.”

Referenz: W. Tabis et al., Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate, Nature Communications 5, 5875 (2014).
DOI:  10.1038/ncomms6875

Eugen Weschke/arö


You might also be interested in
  • <p>The illustration is alluding to the laser experiment in the background and shows the structure of TGCN.</p>SCIENCE HIGHLIGHT      05.06.2019

    Organic electronics: a new semiconductor in the carbon-nitride family

    Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family. Triazine-based graphitic carbon nitride (TGCN) is a semiconductor that should be highly suitable for applications in optoelectronics. Its structure is two-dimensional and reminiscent of graphene. Unlike graphene, however, the conductivity in the direction perpendicular to its 2D planes is 65 times higher than along the planes themselves. [...]

  • <p>Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy.</p>SCIENCE HIGHLIGHT      10.05.2019

    Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?

    When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters. [...]

  • <p>Tomography of a lithium electrode in its initial condition.</p>SCIENCE HIGHLIGHT      06.05.2019

    3D tomographic imagery reveals how lithium batteries age

    Lithium batteries lose amp-hour capacity over time. Microstructures can form on the electrodes with each new charge cycle, which further reduces battery capacity. Now an HZB team together with battery researchers from Forschungszentrum Jülich, the University of Munster, and partners in China have documented the degradation process of lithium electrodes in detail for the first time. They achieved this with the aid of a 3D tomography process using synchrotron radiation at BESSY II (HZB) as well at the Helmholtz-Zentrum Geesthacht (HZG). Their results have been published open access in the scientific journal "Materials Today". [...]