New opportunities for CIGS solar cells

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners.

PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. © A. Kubatzki/HZB

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB.

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB. © A. Kubatzki/HZB

Dynamic CIGS solar cell technology workshop gives rise to optimism: experts predict higher efficiencies and lean production technologies

More than 90 participants from industry and academia from Europe, Asia and USA exchanged latest results in the field of CIGS solar cells, during the “IW-CIGSTech 6” organised by PVcomB at HZB in Berlin-Adlershof from 29. to 30. April.  They reported new, exciting results, ranging from record module efficiencies and significant module manufacturing simplification to solid scientific understanding of the underlying atomic-scale physics and chemistry.

CIGS-thin film solar cells are based on compound semiconductors consisting of the elements Copper, Indium, Gallium and Selenium and Sulphur. They are the most efficient thin-film solar cell technology to date. PVcomB conducts research and technological improvement on CIGS solar cells, in close cooperation with industrial partners. “We have seen very remarkable improvements in CIGS technology over the past year and many exciting new industrial and academic results were presented at the workshop”, says Rutger Schlatmann, head of the institute PVcomB at the HZB, explicitly mentioning following examples:

•    A strong increase in world record cell efficiency to almost 22%, and a clear, scientifically based outlook towards 25% cells in the coming years.
•    World record module efficiencies well above 16%.
•    Restart of CIGS production capacity in Germany and upcoming remarkable expansion of production capacity worldwide.
•    Production process simplifications (e.g. reduction of number of process steps).
•    Very promising results in the field of wet processing, e.g. electrochemical deposition.
•    Improved process control achieving a remarkable 98% process yield.
•    Product development for very specific applications (large solar power plants with very low cost electrical power, aesthetic appearance and flexibility in design for BIPV).
“Summarizing the impressions of the workshop, there is a powerful community of CIGS technologists and academics. Many of them report rapid progress in development and there is an optimistic view on the successful growth of CIGS photovoltaics” Schlatmann concludes.

red/arö


You might also be interested in

  • Key role of nickel ions in the Simons process discovered
    News
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.
  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.