Success rate 100 percent: HZB teams get third party funding for Solar Fuel projects

At the HZB Institute for Solar Fuels, also nanostructures in metal oxides are explored as efficient catalyst materials for artificial photosynthesis.

At the HZB Institute for Solar Fuels, also nanostructures in metal oxides are explored as efficient catalyst materials for artificial photosynthesis. © HZB

Converting solar energy and storing it in form of solar fuels, is one of the great scientific and technological challenges today to enable the transition into a more sustainable future powered by renewable energies. Scientists at the HZB institute for Solar Fuels are exploring new semiconductor materials in order to develop compact, robust and economic solutions for “artificial photosynthesis”. They have submitted four research projects in collaboration with partners from universities for funding by the German Research Association (Deutsche Forschungsgemeinschaft DFG) in the Priority Programme „Fuels Produced Regeneratively Through Light-Driven Water Splitting” (SPP 1613). All four projects have now been approved for funding.

“A success rate of 100 percent in this highly competitive call is truly remarkable, since only half of the submitted proposals could be funded”, Professor Roel van de Krol, head of the HZB Institute for Solar Fuels states. “This means we can further strengthen and expand our institute’s activities”. The first three projects are extensions of already running projects, while the 4th one is a new activity.

The objective is to investigate artificial photosynthesis based on solid-state inorganic materials from a fundamental scientific perspective as well as the aspects of material science required for its technological implementation. The goal is to convert solar energy into storable fuels, in this case hydrogen, which has a high gravimetric energy density and can be safely stored and used whenever needed, either in a fuel cell to generate electricity or as a base component for the production of synthetic hydrocarbon fuels.


The approved projects are:

  • Development of catalysts, namely manganese oxides and molybdenum sulphides, for an implementation in a light-driven water-splitting device using a multi-junction solar cell. Partner: Prof. H. Dau (PI, FU-Berlin), Prof. P. Kurz (University Freiburg i. Br.), Prof. S. Fiechter (HZB).
  • High-throughput characterization of multinary transition metal oxide and oxynitride libraries. New materials for solar water splitting with improved properties. Partner: Prof. Wolfgang Schuhmann (PI, Ruhr University Bochum), Prof. Alfred Ludwig (Ruhr University Bochum), Prof. S. Fiechter (HZB).
  • Novel thin film composites and co-catalysts for visible light-induced water splitting. Partner: M. Behrens (Uni Duisburg), A. Fischer (Uni Freiburg), M. Lerch (TU Berlin), T. Schedel-Niedrig (HZB).
  • Development of optimum bandgap photoanodes for tandem water-splitting cells based on doped complex metal oxides and III-V semiconductors coupled to water oxidation electrocatalysts. Partner: R. Beranek (PI, Ruhr University Bochum), A. Devi (Ruhr University Bochum), R. Eichberger (HZB).

arö

  • Copy link

You might also be interested in

  • Industrial Research Fellow at HZB: More time for discussions
    Interview
    12.05.2025
    Industrial Research Fellow at HZB: More time for discussions
    The South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
  • Perovskites: Hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Perovskites: Hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.