Joint Lab BeJEL receives 1.4 million EUR grant

The Berlin Joint EPR Laboratory (BeJEL) operated by HZB and Freie Universität Berlin has pulled in six of 27 subprojects within a DFG priority program to address“New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials”.

Electron spins are unique probes for materials and life sciences, and can be detected through electron paramagnetic resonance (EPR). The functioning of molecular machines, or the electronic properties of solar cells as well as catalytic chemical reactions, for example, can be determined at BeJEL using this method. To further enhance the sensitivity and resolution of EPR, the DFG Priority Programme SPP-1601 “New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials” has now been extended for a further three years through grants totalling 7.9 million EUR. In addition, DFG will make available 500,000 EUR to further expand collaboration with EPR groups in the USA.

Berlin-based BeJEL successfully pulled in six of the total 27 project grants within the competitive SPP Priority Programme selection process. With the help of 1.4 million EUR in DFG funding, BeJEL will now be in a position to push EPR into the terahertz region, implement ultra-high vacuum sample environments, develop miniature resonators and novel spin labels for investigating proteins in biological cells and study charge transport processes in inorganic and organic solar cells.

“The new financial stimulus from the DFG SPP Priority Programme considerably strengthens Berlin as an EPR site”, says Prof. Robert Bittl, official spokesperson for BeJEL. “In addition, we will be able to undertake new collaborative projects with our partners in Germany and the USA to achieve our ambitious goal of detecting even very small spin ensembles in the systems we are investigating”, adds Prof. Klaus Lips from HZB.

The six individual projects will be undertaken by the following BeJEL project leaders: Prof. Jan Behrends (Freie Universität Berlin/HZB), Prof. Robert Bittl (Freie Universität Berlin), Prof. Enrica Bordignon (Freie Universität Berlin), Prof. Klaus Lips (HZB), Prof. Thomas Risse (Freie Universität Berlin), and Dr. Alexander Schnegg (HZB).

More information on BeJEL

More Information on the research project: www.spp1601.de

red.

  • Copy link

You might also be interested in

  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • KlarText Prize for Hanna Trzesniowski
    News
    08.09.2025
    KlarText Prize for Hanna Trzesniowski
    The chemist has been awarded the prestigious KlarText Prize for Science Communication by the Klaus Tschira Foundation.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.