Joint Lab BeJEL receives 1.4 million EUR grant

The Berlin Joint EPR Laboratory (BeJEL) operated by HZB and Freie Universität Berlin has pulled in six of 27 subprojects within a DFG priority program to address“New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials”.

Electron spins are unique probes for materials and life sciences, and can be detected through electron paramagnetic resonance (EPR). The functioning of molecular machines, or the electronic properties of solar cells as well as catalytic chemical reactions, for example, can be determined at BeJEL using this method. To further enhance the sensitivity and resolution of EPR, the DFG Priority Programme SPP-1601 “New Frontiers in Sensitivity for EPR Spectroscopy – from Biological Cells to Nano Materials” has now been extended for a further three years through grants totalling 7.9 million EUR. In addition, DFG will make available 500,000 EUR to further expand collaboration with EPR groups in the USA.

Berlin-based BeJEL successfully pulled in six of the total 27 project grants within the competitive SPP Priority Programme selection process. With the help of 1.4 million EUR in DFG funding, BeJEL will now be in a position to push EPR into the terahertz region, implement ultra-high vacuum sample environments, develop miniature resonators and novel spin labels for investigating proteins in biological cells and study charge transport processes in inorganic and organic solar cells.

“The new financial stimulus from the DFG SPP Priority Programme considerably strengthens Berlin as an EPR site”, says Prof. Robert Bittl, official spokesperson for BeJEL. “In addition, we will be able to undertake new collaborative projects with our partners in Germany and the USA to achieve our ambitious goal of detecting even very small spin ensembles in the systems we are investigating”, adds Prof. Klaus Lips from HZB.

The six individual projects will be undertaken by the following BeJEL project leaders: Prof. Jan Behrends (Freie Universität Berlin/HZB), Prof. Robert Bittl (Freie Universität Berlin), Prof. Enrica Bordignon (Freie Universität Berlin), Prof. Klaus Lips (HZB), Prof. Thomas Risse (Freie Universität Berlin), and Dr. Alexander Schnegg (HZB).

More information on BeJEL

More Information on the research project: www.spp1601.de

red.

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed an innovative monochromator that is now being produced and marketed by a company. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.