Towards graphene biosensors

The illustration shows how maleimide compounds bind to the graphene surface. The graphene monolayer lies on a thin film of silicon nitride (red) that in turn is on a quartz microbalance (blue) and can be subjected to a potential via a gold contact (yellow).<br /><br />Illustration: Marc Gluba/HZB

The illustration shows how maleimide compounds bind to the graphene surface. The graphene monolayer lies on a thin film of silicon nitride (red) that in turn is on a quartz microbalance (blue) and can be subjected to a potential via a gold contact (yellow).

Illustration: Marc Gluba/HZB

For the first time, a team of scientists has succeeded in precisely measuring and controlling the thickness of an organic compound that has been bound to a graphene layer. This might enable graphene to be used as a sensitive detector for biological molecules in the future.

Pure carbon occurs in many forms. Besides the classical configurations found in diamonds, graphite, and coal, there are other younger exotic cousins such as graphene. Its structure resembles a honeycomb – a hexagonal mesh with a carbon atom at every corner – that is only a single atomic layer thick. Hence, it is essentially two-dimensional. As a result, graphene is extremely conductive, completely transparent, and quite resilient both chemically and mechanically.

Graphene is not very selective

It has long been known that graphene is also fundamentally suited to detecting traces of organic molecules. This is because the electrical conductivity of graphene drops as soon as foreign molecules bind to it. The problem, though, is that this happens with almost every molecule. Graphene is not very selective, which makes it very difficult to differentiate molecules. Therefore, it cannot be used as a sensor.

Now, mounting brackets for detector molecules attached

Now a team from the HZB Institute for Silicon Photovoltaics has found a way to increase the selectivity. They were successful in electrochemically activating graphene and preparing it to host molecules that act as selective binding sites. To accomplish this, para-maleimidophenyl groups from an organic solution were grafted to the surface of the graphene. These organic molecules behave like mounting brackets to which the selective detector molecules can be attached in the next step. “Thanks to these molecules, the graphene can now be employed for detecting various substances similar to how a key fits a lock”, explains Dr. Marc Gluba. The “lock” molecules on the surface are highly selective and only absorb the matching “key” molecules.

Large graphene surfaces at HZB

Other research groups had also carried out experiments along these lines. However, they only had tiny graphene flakes with diameters in the microns available to them, so that edge effects predominated. Meanwhile, physicists and chemists at HZB produced graphene surfaces several square centimeters in size so that edge effects play hardly any role in comparison to the surface processes. Then, they transferred the graphene layer to a quartz crystal microbalance. Any increase in mass alters the oscillatory frequency of the quartz crystal that even small amounts right down to individual molecular layers can be measured.

Precise detection and control

“For the first time, we were able to precisely and accurately detect how many molecules actually were grafted to the surface of the graphene”, reports junior researcher Felix Rösicke, who investigated this problem for his doctoral dissertation. “In addition, we can precisely control how many molecules bind to the graphene by adjusting an applied voltage”, explains Dr. Jörg Rappich from the HZB Institute for Silicon Photovoltaics, Rösicke’s advisor.

“The hopes we have for graphene are really enormous”, says Prof. Norbert Nickel, head of the research team. For example, one thing you could imagine would be a really inexpensive "lab-on-a-chip” – you would apply a single drop of blood and immediately obtain data for important
medical diagnostics.

Note: Felix Rösicke is completing his doctoral dissertation in the School of Analytical Sciences Adlerhof (SALSA) at Humboldt-Universität zu Berlin and at HZB.

Publication:
Quantifying the electrochemical maleimidation of large area graphene
F. Rösicke, M.A. Gluba, K. Hinrichs, Guoguang Sun, N.H. Nickel, J. Rappich
doi:10.1016/j.elecom.2015.05.010

arö


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While the ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.