Emergence of a “devil’s staircase” in a spin-valve system

Hexagonal single crystal of SrCo<sub>6</sub>O<sub>11</sub>, with a sample diameter of approximately 0,2 millimetres.

Hexagonal single crystal of SrCo6O11, with a sample diameter of approximately 0,2 millimetres.

The material exhibits distinct magnetization plateau connected with different spin configurations.

The material exhibits distinct magnetization plateau connected with different spin configurations.

A Japanese-German team observes at BESSY II how spins form unusual magnetic structures in a complex cobalt oxide single crystal. Such a material offers new perspectives for spintronic applications.

While classical GMR systems are composed of metallic layers, complex oxides often intrinsically provide layered structures with alternating magnetic configurations that can act as spin valves. Cobalt oxides are a class of materials that can exhibit complex magnetic order that changes with increasing magnetic field, as for example indicated by distinct plateaux in the magnetization curve.

Magnetic structures mapped

A Japanese team of researchers led by the group of Associate Professor Hiroki Wadati at the University of Tokyo has been successful in characterizing the magnetic structures of the complex cobalt oxide SrCo6O11 using the high-field diffractometer of BESSY II. Synthesis of new materials often results in tiny samples, and the crystals studied here had a diameter of only 0.2 mm. With the very high sensitivity of resonant diffraction, a core competence at the UE46_PGM1 beamline of BESSY II, they managed to observe a fascinating type of spin order in the samples that are hardly visible by the bare eye. This order is called devil’s staircase, characterizing a phenomenon, where a pletora, in principle even an infinite number, of so-called commensurate superstructures - magnetic configurations in the present case - can be realized by tuning an external parameter, e.g., a magnetic field.

New options with a Devil's staircase

This exceeds the characteristic of a spin valve and may open new paths in spintronics. The research was carried out in close cooperation with German scientists from the Institut für Festkörper-und Werkstoffforschung Dresden and HZB. The results are now published in Physical Review Letters.

Reference:  T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati, "Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11", Physical Review Letters 114 (236403-1-5):
doi:10.1103/PhysRevLett.114.236403.

Eugen Weschke

You might also be interested in

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • RBB Abendschau on visit at CatLab
    News
    01.08.2022
    RBB Abendschau on visit at CatLab
    CatLab got a visit from the rbb Abendschau.
    Under the title "Der Weg weg vom Erdgas" (The way away from natural gas), the programme was broadcast on Sunday, 31st July in the rbb Abendschau and will be available in the rbb media library for 7 days.